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PREFACE

hen a computer software succeeds—when it meets the needs of the people

who use it, when it performs flawlessly over a long period of time, when it is
easy to modify and even easier to use—it can and does change things for the better.
But when software fails—when its users are dissatisfied, when it is error prone, when
it is difficult to change and even harder to use—bad things can and do happen. We
all want to build software that makes things better, avoiding the bad things that lurk
in the shadow of failed efforts. To succeed, we need discipline when software is
designed and built. We need an engineering approach.

In the 20 years since the first edition of this book was written, software engineer-
ing has evolved from an obscure idea practiced by a relatively small number of zealots
to a legitimate engineering discipline. Today, it is recognized as a subject worthy of
serious research, conscientious study, and tumultuous debate. Throughout the indus-
try, software engineer has replaced programmer as the job title of preference. Software
process models, software engineering methods, and software tools have been adopted
successfully across a broad spectrum of industry applications.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service the most advanced technologies of the day.
Many professionals and students are unaware of modern methods. And as a result,
the quality of the software that we produce suffers and bad things happen. In addi-
tion, debate and controversy about the true nature of the software engineering
approach continue. The status of software engineering is a study in contrasts. Atti-
tudes have changed, progress has been made, but much remains to be done before
the discipline reaches full maturity.

The fifth edition of Software Engineering: A Practitioner's Approach is intended to
serve as a guide to a maturing engineering discipline. The fifth edition, like the four
editions that preceded it, is intended for both students and practitioners, retaining its
appeal as a guide to the industry professional and a comprehensive introduction to
the student at the upper level undergraduate or first year graduate level. The format
and style of the fifth edition have undergone significant change, making the presen-
tation more reader-friendly and the content more easily accessible.

The fifth edition is considerably more than a simple update. The book has been
revised to accommodate the dramatic growth in the field and to emphasize new and
important software engineering practices. In addition, a comprehensive Web site has
been developed to complement the content of the book. The Web site, which I call
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SepaWeb, can be found at http://www.mhhe.com/pressman. Designed to be used
in conjunction with the fifth edition of Software Engineering: A Practitioner's Approach,
SepaWeb provides a broad array of software engineering resources that will benefit
instructors, students, and industry professionals.

Like all Web sites, SepaWeb will evolve over time, but the following major con-
tent areas will always be present: (1) a broad array of instructor resources including
a comprehensive on-line Instructor’s Guide and supplementary teaching materials
(e.g., slide presentations to supplement lectures, video-based instructional aids); (2)
a wide variety of student resources including an extensive on-line learning center
(encompassing study guides, Web-based resources, and self-tests), an evolving col-
lection of “tiny tools,” a case study, and additional supplementary content; and (3) a
detailed collection of professional resources including outlines (and samples of) soft-
ware engineering documents and other work products, a useful set of software engi-
neering checklists, a catalog of software engineering (CASE) tools, a comprehensive
collection of Web-based resources, and an “adaptable process model” that provides
a detailed task breakdown of the software engineering process. In addition, Sepa-
Web will contain other goodies that are currently in development.

The 32 chapters of the fifth edition have been organized into five parts. This has
been done to compartmentalize topics and assist instructors who may not have the
time to complete the entire book in one term. Part One, The Product and the Process,
presents an introduction to the software engineering milieu. It is intended to intro-
duce the subject matter, and more important, to present concepts that will be nec-
essary for later chapters. Part Two, Managing Software Projects, presents topics that
are relevant to those who plan, manage, and control a software development proj-
ect. Part Three, Conventional Methods for Software Engineering, presents the clas-
sical analysis, design, and testing methods that some view as the “conventional”
school of software engineering. Part Four, Object-Oriented Software Engineering,
presents object-oriented methods across the entire software engineering process,
including analysis, design, and testing. Part Five, Advanced Software Engineering
Topics, presents dedicated chapters that address formal methods, cleanroom soft-
ware engineering, component-based software engineering, client/server software
engineering, Web engineering, reengineering, and CASE.

The five-part organization of the fifth edition enables an instructor to "cluster" top-
ics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. For example, a "design course" might empha-
size only Part Three or Part Four; a "methods course" might present selected chap-
ters in Parts Three, Four, and Five. A "management course" would stress Parts One
and Two. By organizing the fifth edition in this way, I attempted to provide an instruc-
tor with a number of teaching options. SepaWeb can and should be used to supple-
ment the content that is chosen from the book.

An Instructor's Guide for Software Engineering: A Practitioner's Approach is avail-
able from SepaWeb. The Instructor's Guide presents suggestions for conducting var-
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ious types of software engineering courses, recommendations for a variety of soft-
ware projects to be conducted in conjunction with a course, solutions to selected
problems, and a number of teaching aids.

A comprehensive video curriculum, Essential Software Engineering, is available to
complement this book. The video curriculum has been designed for industry train-
ing and has been modularized to enable individual software engineering topics to be
presented on an as-needed, when-needed basis. Further information on the video
can be obtained by mailing the request card at the back of this book.!

My work on the five editions of Software Engineering: A Practitioner’s Approach has
been the longest continuing technical project of my life. Even when the writing stops,
information extracted from the technical literature continues to be assimilated and
organized. For this reason, my thanks to the many authors of books, papers, and arti-
cles as well as a new generation of contributors to electronic media (newsgroups, e-
newsletters, and the World Wide Web) who have provided me with additional insight,
ideas, and commentary over the past 20 years. Many have been referenced within
the pages of each chapter. All deserve credit for their contribution to this rapidly evolv-
ing field. I also wish to thank the reviewers of the fifth edition: Donald H. Kratft,
Louisiana State University; Panos E. Livadas, University of Florida; Joseph Lambert,
Pennsylvania State University; Kenneth L. Modesitt, University of Michigan—Dear-
born; and, James Purtilo, University of Maryland. Their comments and criticism have
been invaluable. Special thanks and acknowledgement also go to Bruce Maxim of
the University of Michigan—Dearborn, who assisted me in developing the Web site
that accompanies this book. Bruce is responsible for much of its design and peda-
gogical content.

The content of the fifth edition of Software Engineering: A Practitioner's Approach
has been shaped by industry professionals, university professors, and students who
have used earlier editions of the book and have taken the time to communicate their
suggestions, criticisms, and ideas. My thanks to each of you. In addition, my personal
thanks go to our many industry clients worldwide, who certainly teach me as much
or more than I can teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. And finally,
to Barbara, my love and thanks for encouraging still another edition of "the book."

Roger S. Pressman

1 If the request card is missing, please visit the R. S. Pressman & Associates, Inc. Web site at
http://www.rspa.com/ese or e-mail a request for information to info@rspa.com.
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USING THIS BOOK

The fifth edition of Software Engineering: A Practitioner’s Approach (SEPA) has been
redesigned to enhance your reading experience and to provide integrated links to the
SEPA Web site, http://www.mhhe.com/pressman/. SepaWeb contains a wealth of useful
supplementary information for readers of the book and a broad array of resources (e.g.,
an Instructor’s Guide, classroom slides, and video supplements) for instructors who have
adopted SEPA for classroom use.

A comprehensive video curriculum, Essential Software Engineering, is available to com-
plement this book. The video curriculum has been designed for industry training and has
been modularized to enable individual software engineering topics to be presented on an
as-needed, when-needed basis. Further information on the video can be obtained by mail-
ing the request card at the back of this book.!
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THE PRODUCT AND
THE PROCESS

n this part of Software Engineering: A Practitioner’'s Approach, you'll

learn about the product that is to be engineered and the process

that provides a framework for the engineering technology. The

following questions are addressed in the chapters that follow:
e What is computer software . . . really?

e Why do we struggle to build high-quality computer-based
systems?

e How can we categorize application domains for computer
software?

e What myths about software still exist?
e What is a “software process”?
¢ Is there a generic way to assess the quality of a process?

e What process models can be applied to software develop-
ment?

e How do linear and iterative process models differ?

e What are their strengths and weaknesses?

e What advanced process models have been proposed for soft-
ware engineering work?

Once these questions are answered, you'll be better prepared to
understand the management and technical aspects of the engi-
neering discipline to which the remainder of this book is dedicated.






CHAPTER

THE PRODUCT

KEY he warnings began more than a decade before the event, but no one paid
(o (S0 ) much attention. With less than two years to the deadline, the media
::'P::::ii:s“ ....... 9 picked up the story. Then government officials voiced their concern, busi-
component-based ness and industry leaders committed vast sums of money, and finally, dire warn-
assembly. ... 8 ings of pending catastrophe penetrated the public’s consciousness. Software,
8 in the guise of the now-infamous Y2K bug, would fail and, as a result, stop the
world as we then knew it.

failure curves. . . ..

history .......... 5

i 1 As we watched and wondered during the waning months of 1999, I couldn't
reuse 9 help thinking of an unintentionally prophetic paragraph contained on the first
software page of the fourth edition of this book. It stated:

characterisfics ... 6 Computer software has become a driving force. It is the engine that drives business

software decision making. It serves as the basis for modern scientific investigation and engi-
engineering ... 4 neering problem solving. It is a key factor that differentiates modern products and
wear............ 7

services. It is embedded in systems of all kinds: transportation, medical, telecom-
munications, military, industrial processes, entertainment, office products, . . . the
list is almost endless. Software is virtually inescapable in a modern world. And as
we move into the twenty-first century, it will become the driver for new advances in
everything from elementary education to genetic engineering.

What is it? Computer software is
the product that software engi-
neers design and build. It encom-

What are the steps? You build computer software
like you build any successful product, by apply-
ing a process that leads to a high-quality result

QUICK

LOOK

passes programs that execute within a computer
of any size and architecture, documents that
encompass hard-copy and virtual forms, and
data that combine numbers and text but also
includes representations of pictorial, video, and
audio information.

Who does it? Software engineers build it, ond virtu-
ally everyone in the industrialized world uses it
either directly or indirectly.

Why is it important? Because it affects nearly every
aspect of our lives and hcis become pervasive in
our commerce, our culture, and our everyday
activities.

that meets the needs of the people who will use
the product. You apply a software engineering
approach.

What is the work product? From the point of view of

a software engineer, the work product is the pro-
grams, documents, and data that are computer
software. But from the user's viewpoint, the work
product is the resultomt information that somehow
makes the user's world better.

How do I ensure that I've done it right? Read the

remainder of this book, select those ideas appli-
cable to the software that you build, and apply
them to your work.
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“Ideas and
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POINT
Software is both a
product and a vehicle
for delivering a
product.

PART ONE THE PRODUCT AND THE PROCESS

In the five years since the fourth edition of this book was written, the role of soft-
ware as the “driving force” has become even more obvious. A software-driven Inter-
net has spawned its own $500 billion economy. In the euphoria created by the promise
of a new economic paradigm, Wall Street investors gave tiny “dot-com” companies
billion dollar valuations before these start-ups produced a dollar in sales. New
software-driven industries have arisen and old ones that have not adapted to the new
driving force are now threatened with extinction. The United States government has
litigated against the software’s industry’s largest company, just as it did in earlier eras
when it moved to stop monopolistic practices in the oil and steel industries.

Software’s impact on our society and culture continues to be profound. As its
importance grows, the software community continually attempts to develop tech-
nologies that will make it easier, faster, and less expensive to build high-quality com-
puter programs. Some of these technologies are targeted at a specific application
domain (e.g., Web-site design and implementation); others focus on a technology
domain (e.g., object-oriented systems); and still others are broad-based (e.g., oper-
ating systems such as LINUX). However, we have yet to develop a software technol-
ogy that does it all, and the likelihood of one arising in the future is small. And yet,
people bet their jobs, their comfort, their safety, their entertainment, their decisions,
and their very lives on computer software. It better be right.

This book presents a framework that can be used by those who build computer
software—people who must get it right. The technology encompasses a process, a
set of methods, and an array of tools that we call software engineering.

THE EVOLVING ROLE OF SOFTWARE

Today, software takes on a dual role. It is a product and, at the same time, the vehi-
cle for delivering a product. As a product, it delivers the computing potential embod-
ied by computer hardware or, more broadly, a network of computers that are accessible
by local hardware. Whether it resides within a cellular phone or operates inside a
mainframe computer, software is an information transformer—producing, manag-
ing, acquiring, modifying, displaying, or transmitting information that can be as sim-
ple as a single bit or as complex as a multimedia presentation. As the vehicle used
to deliver the product, software acts as the basis for the control of the computer (oper-
ating systems), the communication of information (networks), and the creation and
control of other programs (software tools and environments).

Software delivers the most important product of our time—information. Software
transforms personal data (e.g., an individual's financial transactions) so that the data
can be more useful in a local context; it manages business information to enhance
competitiveness; it provides a gateway to worldwide information networks (e.g., Inter-
net) and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a time span
of little more than 50 years. Dramatic improvements in hardware performance, pro-



Qlofe:

“For | dipped info the
future, far as the
human eye could
see, Saw the vision
of the world, and all
the wonder that
would be.”
Tennyson

Qlofe:

“Computers make it
easy fo do a lot of
things, but most of
the things that they
make it easier fo do
don't need to be
done.”

Andy Rooney

CHAPTER 1 THE PRODUCT 5
found changes in computing architectures, vast increases in memory and storage
capacity, and a wide variety of exotic input and output options have all precipitated
more sophisticated and complex computer-based systems. Sophistication and com-
plexity can produce dazzling results when a system succeeds, but they can also pose
huge problems for those who must build complex systems.

Popular books published during the 1970s and 1980s provide useful historical
insight into the changing perception of computers and software and their impact on
our culture. Osborne [OSB79] characterized a "new industrial revolution." Toffler
[TOF80] called the advent of microelectronics part of "the third wave of change" in
human history, and Naisbitt [NAI82] predicted a transformation from an industrial
society to an "information society." Feigenbaum and McCorduck [FEI83] suggested
that information and knowledge (controlled by computers) would be the focal point
for power in the twenty-first century, and Stoll [STO89] argued that the "electronic
community" created by networks and software was the key to knowledge interchange
throughout the world.

As the 1990s began, Toffler [TOF90] described a "power shift" in which old power
structures (governmental, educational, industrial, economic, and military) disinte-
grate as computers and software lead to a "democratization of knowledge." Yourdon
[YOU92] worried that U.S. companies might loose their competitive edge in software-
related businesses and predicted “the decline and fall of the American programmer.”
Hammer and Champy [HAM93] argued that information technologies were to play a
pivotal role in the “reengineering of the corporation.” During the mid-1990s, the per-
vasiveness of computers and software spawned a rash of books by “neo-Luddites”
(e.g., Resisting the Virtual Life, edited by James Brook and lain Boal and The Future
Does Not Compute by Stephen Talbot). These authors demonized the computer, empha-
sizing legitimate concerns but ignoring the profound benefits that have already been
realized. [LEV95]

During the later 1990s, Yourdon [YOU96] re-evaluated the prospects for the
software professional and suggested the “the rise and resurrection” of the Ameri-
can programmer. As the Internet grew in importance, his change of heart proved
to be correct. As the twentieth century closed, the focus shifted once more, this
time to the impact of the Y2K “time bomb” (e.g., [YOU98b], [DEJ98], [KAR99]).
Although the predictions of the Y2K doomsayers were incorrect, their popular
writings drove home the pervasiveness of software in our lives. Today, “ubiquitous
computing” [NOR98] has spawned a generation of information appliances that
have broadband connectivity to the Web to provide “a blanket of connectedness
over our homes, offices and motorways” [LEV99]. Software’s role continues to
expand.

The lone programmer of an earlier era has been replaced by a team of software
specialists, each focusing on one part of the technology required to deliver a com-
plex application. And yet, the same questions asked of the lone programmer are being
asked when modern computer-based systems are built:
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e Why does it take so long to get software finished?
e Why are development costs so high?
e Why can't we find all the errors before we give the software to customers?

e Why do we continue to have difficulty in measuring progress as software is
being developed?

These, and many other questions,! are a manifestation of the concern about soft-
ware and the manner in which it is developed—a concern that has lead to the adop-
tion of software engineering practice.

SOFTWARE

In 1970, less than 1 percent of the public could have intelligently described what
"computer software" meant. Today, most professionals and many members of the
public at large feel that they understand software. But do they?

A textbook description of software might take the following form: Software is (1)
instructions (computer programs) that when executed provide desired function and per-
formance, (2)data structures that enable the programs to adequately manipulate infor-
mation, and (3) documents that describe the operation and use of the programs. There
is no question that other, more complete definitions could be offered. But we need
more than a formal definition.

1.2.1 Software Characteristics

To gain an understanding of software (and ultimately an understanding of software
engineering), it is important to examine the characteristics of software that make it
different from other things that human beings build. When hardware is built, the
human creative process (analysis, design, construction, testing) is ultimately trans-
lated into a physical form. If we build a new computer, our initial sketches, formal
design drawings, and breadboarded prototype evolve into a physical product (chips,
circuit boards, power supplies, etc.).

Software is a logical rather than a physical system element. Therefore, software
has characteristics that are considerably different than those of hardware:

1. Software is developed or engineered, it is not manufactured in the classical
sense.

Although some similarities exist between software development and hardware man-
ufacture, the two activities are fundamentally different. In both activities, high qual-

1 In an excellent book of essays on the software business, Tom DeMarco [DEM95] argues the coun-
terpoint. He states: “Instead of asking ‘why does software cost so much?’ we need to begin ask-
ing ‘What have we done to make it possible for today’s software to cost so little?” The answer to
that question will help us continue the extraordinary level of achievement that has always distin-
guished the software industry.”
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ity is achieved through good design, but the manufacturing phase for hardware can
introduce quality problems that are nonexistent (or easily corrected) for software.
Both activities are dependent on people, but the relationship between people applied
and work accomplished is entirely different (see Chapter 7). Both activities require
the construction of a "product" but the approaches are different.

Software costs are concentrated in engineering. This means that software proj-
ects cannot be managed as if they were manufacturing projects.

2. Software doesn't "wear out."

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship,
often called the "bathtub curve," indicates that hardware exhibits relatively high fail-
ure rates early in its life (these failures are often attributable to design or manufac-
turing defects); defects are corrected and the failure rate drops to a steady-state level
(ideally, quite low) for some period of time. As time passes, however, the failure rate
rises again as hardware components suffer from the cumulative affects of dust, vibra-
tion, abuse, temperature extremes, and many other environmental maladies. Stated
simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to
wear out. In theory, therefore, the failure rate curve for software should take the form of
the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high failure
rates early in the life of a program. However, these are corrected (ideally, without intro-
ducing other errors) and the curve flattens as shown.The idealized curve is a gross over-
simplification of actual failure models (see Chapter 8 for more information) for software.
However, the implication is clear—software doesn't wear out. But it does deteriorate!

This seeming contradiction can best be explained by considering the “actual curve”
shown in Figure 1.2. During its life, software will undergo change (maintenance). As
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changes are made, it is likely that some new defects will be introduced, causing the
failure rate curve to spike as shown in Figure 1.2. Before the curve can return to the
original steady-state failure rate, another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise—the software is
deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.
When a hardware component wears out, it is replaced by a spare part. There are no
software spare parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable code. There-
fore, software maintenance involves considerably more complexity than hardware
maintenance.

3. Although the industry is moving toward component-based assembly, most
software continues to be custom built.

Consider the manner in which the control hardware for a computer-based product
is designed and built. The design engineer draws a simple schematic of the digital
circuitry, does some fundamental analysis to assure that proper function will be
achieved, and then goes to the shelf where catalogs of digital components exist. Each
integrated circuit (called an IC or a chip) has a part number, a defined and validated
function, a well-defined interface, and a standard set of integration guidelines. After
each component is selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design components
is created. Standard screws and off-the-shelf integrated circuits are only two of thou-
sands of standard components that are used by mechanical and electrical engineers
as they design new systems. The reusable components have been created so that the
engineer can concentrate on the truly innovative elements of a design, that is, the
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parts of the design that represent something new. In the hardware world, component
reuse is a natural part of the engineering process. In the software world, it is some-
thing that has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can be
reused in many different programs. In the 1960s, we built scientific subroutine libraries
that were reusable in a broad array of engineering and scientific applications. These
subroutine libraries reused well-defined algorithms in an effective manner but had a
limited domain of application. Today, we have extended our view of reuse to encom-
pass not only algorithms but also data structure. Modern reusable components encap-
sulate both data and the processing applied to the data, enabling the software engineer
to create new applications from reusable parts. For example, today's graphical user
interfaces are built using reusable components that enable the creation of graphics
windows, pull-down menus, and a wide variety of interaction mechanisms. The data
structure and processing detail required to build the interface are contained with a
library of reusable components for interface construction.

1.2.2 Software Applications

Software may be applied in any situation for which a prespecified set of procedural
steps (i.e., an algorithm) has been defined (notable exceptions to this rule are expert
system software and neural network software). Information content and determinacy
are important factors in determining the nature of a software application. Content
refers to the meaning and form of incoming and outgoing information. For example,
many business applications use highly structured input data (a database) and pro-
duce formatted “reports.” Software that controls an automated machine (e.g., a
numerical control) accepts discrete data items with limited structure and produces
individual machine commands in rapid succession.

Information determinacy refers to the predictability of the order and timing of infor-
mation. An engineering analysis program accepts data that have a predefined order,
executes the analysis algorithm(s) without interruption, and produces resultant data
in report or graphical format. Such applications are determinate. A multiuser oper-
ating system, on the other hand, accepts inputs that have varied content and arbi-
trary timing, executes algorithms that can be interrupted by external conditions, and
produces output that varies as a function of environment and time. Applications with
these characteristics are indeterminate.

It is somewhat difficult to develop meaningful generic categories for software appli-
cations. As software complexity grows, neat compartmentalization disappears. The
following software areas indicate the breadth of potential applications:

System software. System software is a collection of programs written to service
other programs. Some system software (e.g., compilers, editors, and file manage-
ment utilities) process complex, but determinate, information structures. Other sys-
tems applications (e.g., operating system components, drivers, telecommunications
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processors) process largely indeterminate data. In either case, the system software
area is characterized by heavy interaction with computer hardware; heavy usage by
multiple users; concurrent operation that requires scheduling, resource sharing, and
sophisticated process management; complex data structures; and multiple external
interfaces.

Real-time software. Software that monitors/analyzes/controls real-world events
as they occur is called real time. Elements of real-time software include a data gath-
ering component that collects and formats information from an external environ-
ment, an analysis component that transforms information as required by the
application, a control/output component that responds to the external environment,
and a monitoring component that coordinates all other components so that real-time
response (typically ranging from 1 millisecond to 1 second) can be maintained.
Business software. Business information processing is the largest single software
application area. Discrete "systems" (e.g., payroll, accounts receivable/payable, inven-
tory) have evolved into management information system (MIS) software that accesses
one or more large databases containing business information. Applications in this
area restructure existing data in a way that facilitates business operations or man-
agement decision making. In addition to conventional data processing application,
business software applications also encompass interactive computing (e.g., point-
of-sale transaction processing).

Engineering and scientific software. Engineering and scientific software have
been characterized by "number crunching" algorithms. Applications range from astron-
omy to volcanology, from automotive stress analysis to space shuttle orbital dynam-
ics, and from molecular biology to automated manufacturing. However, modern
applications within the engineering/scientific area are moving away from conven-
tional numerical algorithms. Computer-aided design, system simulation, and other
interactive applications have begun to take on real-time and even system software
characteristics.

Embedded software. Intelligent products have become commonplace in nearly
every consumer and industrial market. Embedded software resides in read-only mem-
ory and is used to control products and systems for the consumer and industrial mar-
kets. Embedded software can perform very limited and esoteric functions (e.g., keypad
control for a microwave oven) or provide significant function and control capability
(e.g., digital functions in an automobile such as fuel control, dashboard displays, and
braking systems).

Personal computer software. The personal computer software market has bur-
geoned over the past two decades. Word processing, spreadsheets, computer graph-
ics, multimedia, entertainment, database management, personal and business financial
applications, external network, and database access are only a few of hundreds of
applications.

Web-based software. The Web pages retrieved by a browser are software that
incorporates executable instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g.,
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hypertext and a variety of visual and audio formats). In essence, the network becomes
a massive computer providing an almost unlimited software resource that can be
accessed by anyone with a modem.

Artificial intelligence software. Artificial intelligence (Al) software makes use
of nonnumerical algorithms to solve complex problems that are not amenable to
computation or straightforward analysis. Expert systems, also called knowledge-
based systems, pattern recognition (image and voice), artificial neural networks,
theorem proving, and game playing are representative of applications within this
category.

SOFTWARE: A CRISIS ON THE HORIZON?

Many industry observers (including this author) have characterized the problems
associated with software development as a "crisis." More than a few books (e.g.,
[GLA97], [FLO97], [YOU98a]) have recounted the impact of some of the more spec-
tacular software failures that have occurred over the past decade. Yet, the great suc-
cesses achieved by the software industry have led many to question whether the term
software crisis is still appropriate. Robert Glass, the author of a number of books on
software failures, is representative of those who have had a change of heart. He states
[GLA98]: “I look at my failure stories and see exception reporting, spectacular fail-
ures in the midst of many successes, a cup that is [now] nearly full.”

It is true that software people succeed more often than they fail. It also true that
the software crisis predicted 30 years ago never seemed to materialize. What we
really have may be something rather different.

The word crisis is defined in Webster's Dictionary as “a turning point in the course of
anything; decisive or crucial time, stage or event.” Yet, in terms of overall software qual-
ity and the speed with which computer-based systems and products are developed,
there has been no "turning point," no "decisive time," only slow, evolutionary change,
punctuated by explosive technological changes in disciplines associated with software.

The word crisis has another definition: "the turning point in the course of a disease,
when it becomes clear whether the patient will live or die." This definition may give us
a clue about the real nature of the problems that have plagued software development.

What we really have might be better characterized as a chronic affliction.2 The
word affliction is defined as "anything causing pain or distress." But the definition of
the adjective chronic is the key to our argument: "lasting a long time or recurring
often; continuing indefinitely." It is far more accurate to describe the problems we
have endured in the software business as a chronic affliction than a crisis.

Regardless of what we call it, the set of problems that are encountered in the devel-
opment of computer software is not limited to software that "doesn't function

2 This terminology was suggested by Professor Daniel Tiechrow of the University of Michigan in a
talk presented in Geneva, Switzerland, April 1989.
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properly." Rather, the affliction encompasses problems associated with how we
develop software, how we support a growing volume of existing software, and how
we can expect to keep pace with a growing demand for more software.

We live with this affliction to this day—in fact, the industry prospers in spite of it.
And yet, things would be much better if we could find and broadly apply a cure.

SOFTWARE MYTHS

Many causes of a software affliction can be traced to a mythology that arose during
the early history of software development. Unlike ancient myths that often provide
human lessons well worth heeding, software myths propagated misinformation and
confusion. Software myths had a number of attributes that made them insidious; for
instance, they appeared to be reasonable statements of fact (sometimes containing
elements of truth), they had an intuitive feel, and they were often promulgated by
experienced practitioners who "knew the score."

Today, most knowledgeable professionals recognize myths for what they are—
misleading attitudes that have caused serious problems for managers and technical
people alike. However, old attitudes and habits are difficult to modify, and remnants
of software myths are still believed.

Management myths. Managers with software responsibility, like managers in most
disciplines, are often under pressure to maintain budgets, keep schedules from slip-
ping, and improve quality. Like a drowning person who grasps at a straw, a software
manager often grasps at belief in a software myth, if that belief will lessen the pres-
sure (even temporarily).

Myth: We already have a book that's full of standards and procedures for building
software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software
practitioners aware of its existence? Does it reflect modern software engineering prac-
tice? Is it complete? Is it streamlined to improve time to delivery while still main-
taining a focus on quality? In many cases, the answer to all of these questions is "no."

Myth: My people have state-of-the-art software development tools, after all, we
buy them the newest computers.

Reality: 1t takes much more than the latest model mainframe, workstation, or PC
to do high-quality software development. Computer-aided software engineering
(CASE) tools are more important than hardware for achieving good quality and pro-
ductivity, yet the majority of software developers still do not use them effectively.

Myth: If we get behind schedule, we can add more programmers and catch up
(sometimes called the Mongolian horde concept).

Reality: Software development is not a mechanistic process like manufacturing.
In the words of Brooks [BRO75]: "adding people to a late software project makes it
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later.” At first, this statement may seem counterintuitive. However, as new people
are added, people who were working must spend time educating the newcomers,
thereby reducing the amount of time spent on productive development effort. Peo-
ple can be added but only in a planned and well-coordinated manner.

Myth: If1decide to outsource3 the software project to a third party, I can just relax
and let that firm build it.

Reality: If an organization does not understand how to manage and control software
projects internally, it will invariably struggle when it outsources software projects.

Customer myths. A customer who requests computer software may be a person
at the next desk, a technical group down the hall, the marketing/sales department,
or an outside company that has requested software under contract. In many cases,
the customer believes myths about software because software managers and prac-
titioners do little to correct misinformation. Myths lead to false expectations (by the
customer) and ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—
we can fill in the details later.

Reality: A poor up-front definition is the major cause of failed software efforts. A
formal and detailed description of the information domain, function, behavior, per-
formance, interfaces, design constraints, and validation criteria is essential. These
characteristics can be determined only after thorough communication between cus-
tomer and developer.

Myth: Project requirements continually change, but change can be easily accom-
modated because software is flexible.

Reality: 1t is true that software requirements change, but the impact of change
varies with the time at which it is introduced. Figure 1.3 illustrates the impact of
change. If serious attention is given to up-front definition, early requests for change
can be accommodated easily. The customer can review requirements and recom-
mend modifications with relatively little impact on cost. When changes are requested
during software design, the cost impact grows rapidly. Resources have been com-
mitted and a design framework has been established. Change can cause upheaval
that requires additional resources and major design modification, that is, additional
cost. Changes in function, performance, interface, or other characteristics during
implementation (code and test) have a severe impact on cost. Change, when requested
after software is in production, can be over an order of magnitude more expensive
than the same change requested earlier.

3 The term “outsourcing” refers to the widespread practice of contracting software development
work to a third party—usually a consulting firm that specializes in building custom software for
its clients.
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Practitioner's myths. Myths that are still believed by software practitioners have
been fostered by 50 years of programming culture. During the early days of software,
programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code’, the longer
it'll take you to get done." Industry data ([LIE80], JON91], [PUT97]) indicate that
between 60 and 80 percent of all effort expended on software will be expended after
it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.
Reality: One of the most effective software quality assurance mechanisms can be
applied from the inception of a project—the formal technical review. Software reviews
(described in Chapter 8) are a "quality filter" that have been found to be more effec-
tive than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working
program.

Reality: A working program is only one part of a software configuration that includes
many elements. Documentation provides a foundation for successful engineering
and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary doc-
umentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creat-
ing quality. Better quality leads to reduced rework. And reduced rework results in
faster delivery times.

Many software professionals recognize the fallacy of the myths just described. Regret-
tably, habitual attitudes and methods foster poor management and technical practices,
even when reality dictates a better approach. Recognition of software realities is the
first step toward formulation of practical solutions for software engineering.
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SUMMARY

Software has become the key element in the evolution of computer-based systems
and products. Over the past 50 years, software has evolved from a specialized prob-
lem solving and information analysis tool to an industry in itself. But early “pro-
gramming” culture and history have created a set of problems that persist today.
Software has become the limiting factor in the continuing evolution of computer-
based systems. Software is composed of programs, data, and documents. Each of
these items comprises a configuration that is created as part of the software engi-
neering process. The intent of software engineering is to provide a framework for
building software with higher quality.
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PROBLEMS AND POINTS TO PONDER

1.1. Software is the differentiating characteristic in many computer-based products
and systems. Provide examples of two or three products and at least one system in
which software, not hardware, is the differentiating element.

1.2. In the 1950s and 1960s, computer programming was an art form learned in an
apprenticelike environment. How have the early days affected software development
practices today?

1.3. Many authors have discussed the impact of the "information era." Provide a
number of examples (both positive and negative) that indicate the impact of software
on our society. Review one of the pre-1990 references in Section 1.1 and indicate
where the author’s predictions were right and where they were wrong.

1.4. Choose a specific application and indicate: (a) the software application category
(Section 1.2.2) into which it fits; (b) the data content associated with the application;
and (c) the information determinacy of the application.

1.5. As software becomes more pervasive, risks to the public (due to faulty pro-
grams) become an increasingly significant concern. Develop a realistic doomsday
scenario (other than Y2K) where the failure of a computer program could do great
harm (either economic or human).

1.6. Peruse the Internet newsgroup comp.risks and prepare a summary of risks to
the public that have recently been discussed. An alternate source is Software Engi-
neering Notes published by the ACM.

1.7. Write a paper summarizing recent advances in one of the leading edge soft-
ware application areas. Potential choices include: advanced Web-based applications,
virtual reality, artificial neural networks, advanced human interfaces, intelligent agents.

1.8. The "myths” noted in Section 1.4 are slowly fading as the years pass, but oth-
ers are taking their place. Attempt to add one or two “new” myths to each category.
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FURTHER READINGS AND INFORMATION SOURCES

Literally thousands of books are written about computer software. The vast major-
ity discuss programming languages or software applications, but a few discuss soft-
ware itself. Pressman and Herron (Software Shock, Dorset House, 1991) presented an
early discussion (directed at the layperson) of software and the way professionals
build it.

Negroponte's (Being Digital, Alfred A. Knopf, 1995) best-selling book provides a
view of computing and its overall impact in the twenty-first century. Books by Nor-
man [NOR98] and Bergman (Information Appliances and Beyond, Academic Press/Mor-
gan Kaufmann, 2000) suggest that the widespread impact of the PC will decline as
information appliances and pervasive computing connect everyone in the indus-
trialized world and almost every “appliance” that they own to a new Internet
infrastructure.

Minasi (The Software Conspiracy: Why Software Companies Put out Faulty Products,
How They Can Hurt You, and What You Can Do, McGraw-Hill, 2000) argues that the
“modern scourge” of software bugs can be eliminated and suggests ways to accom-
plish this. DeMarco (Why Does Software Cost So Much? Dorset House, 1995) has pro-
duced a collection of amusing and insightful essays on software and the process
through which it is developed.

A wide variety of information sources on software-related topics and manage-
ment is available on the Internet. An up-to-date list of World Wide Web references
that are relevant to software can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/product.mhtml
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But what exactly is a software process from a technical point of view? Within the
context of this book, we define a software process as a framework for the tasks that
are required to build high-quality software. Is process synonymous with software engi-
neering? The answer is “yes” and “no.” A software process defines the approach that
is taken as software is engineered. But software engineering also encompasses tech-
nologies that populate the process—technical methods and automated tools.

More important, software engineering is performed by creative, knowledgeable
people who should work within a defined and mature software process that is appro-
priate for the products they build and the demands of their marketplace. The intent
of this chapter is to provide a survey of the current state of the software process and
pointers to more detailed discussion of management and technical topics presented
later in this book.

SOFTWARE ENGINEERING: A LAYERED TECHNOLOGY

Although hundreds of authors have developed personal definitions of software engi-
neering, a definition proposed by Fritz Bauer [NAU69] at the seminal conference on
the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in
order to obtain economically software that is reliable and works efficiently on real machines.

Almost every reader will be tempted to add to this definition. It says little about the
technical aspects of software quality; it does not directly address the need for cus-
tomer satisfaction or timely product delivery; it omits mention of the importance of
measurement and metrics; it does not state the importance of a mature process. And
yet, Bauer’s definition provides us with a baseline. What “sound engineering princi-
ples” can be applied to computer software development? How do we “economically”
build software so that it is “reliable”? What is required to create computer programs
that work “efficiently” on not one but many different “real machines”? These are the
questions that continue to challenge software engineers.

The IEEE [IEE93] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1).

2.1.1 Process, Methods, and Tools

Software engineering is a layered technology. Referring to Figure 2.1, any engineer-
ing approach (including software engineering) must rest on an organizational com-
mitment to quality. Total quality management and similar philosophies foster a
continuous process improvement culture, and this culture ultimately leads to the
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A quality focus

development of increasingly more mature approaches to software engineering. The
bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. Software engineer-
ing process is the glue that holds the technology layers together and enables rational
and timely development of computer software. Process defines a framework for a set
of key process areas (KPAs) [PAU93] that must be established for effective delivery of
software engineering technology. The key process areas form the basis for manage-
ment control of software projects and establish the context in which technical meth-
ods are applied, work products (models, documents, data, reports, forms, etc.) are
produced, milestones are established, quality is ensured, and change is properly man-
aged.

Software engineering methods provide the technical how-to's for building soft-
ware. Methods encompass a broad array of tasks that include requirements analy-
sis, design, program construction, testing, and support. Software engineering methods
rely on a set of basic principles that govern each area of the technology and include
modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the
process and the methods. When tools are integrated so that information created by
one tool can be used by another, a system for the support of software development,
called computer-aided software engineering, is established. CASE combines software,
hardware, and a software engineering database (a repository containing important
information about analysis, design, program construction, and testing) to create a
software engineering environment analogous to CAD/CAE (computer-aided
design/engineering) for hardware.

2.1.2 A Generic View of Software Engineering

Engineering is the analysis, design, construction, verification, and management of
technical (or social) entities. Regardless of the entity to be engineered, the following
questions must be asked and answered:

e What is the problem to be solved?

e What characteristics of the entity are used to solve the problem?
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e How will the entity (and the solution) be realized?
e How will the entity be constructed?

e What approach will be used to uncover errors that were made in the design
and construction of the entity?

e How will the entity be supported over the long term, when corrections, adap-
tations, and enhancements are requested by users of the entity.

Throughout this book, we focus on a single entity—computer software. To engineer
software adequately, a software engineering process must be defined. In this section,
the generic characteristics of the software process are considered. Later in this chap-
ter, specific process models are addressed.

The work associated with software engineering can be categorized into three
generic phases, regardless of application area, project size, or complexity. Each phase
addresses one or more of the questions noted previously.

The definition phase focuses on what. That is, during definition, the software engi-
neer attempts to identify what information is to be processed, what function and per-
formance are desired, what system behavior can be expected, what interfaces are to
be established, what design constraints exist, and what validation criteria are required
to define a successful system. The key requirements of the system and the software
are identified. Although the methods applied during the definition phase will vary
depending on the software engineering paradigm (or combination of paradigms) that
is applied, three major tasks will occur in some form: system or information engi-
neering (Chapter 10), software project planning (Chapters 3, 5, 6, and 7), and require-
ments analysis (Chapters 11, 12, and 21).

The development phase focuses on how. That is, during development a software
engineer attempts to define how data are to be structured, how function is to be imple-
mented within a software architecture, how procedural details are to be implemented,
how interfaces are to be characterized, how the design will be translated into a pro-
gramming language (or nonprocedural language), and how testing will be performed.
The methods applied during the development phase will vary, but three specific tech-
nical tasks should always occur: software design (Chapters 13-16, and 22), code gen-
eration, and software testing (Chapters 17, 18, and 23).

The support phase focuses on change associated with error correction, adaptations
required as the software's environment evolves, and changes due to enhancements
brought about by changing customer requirements. The support phase reapplies the
steps of the definition and development phases but does so in the context of existing
software. Four types of change are encountered during the support phase:

Correction. Even with the best quality assurance activities, it is likely that the
customer will uncover defects in the software. Corrective maintenance changes
the software to correct defects.

Adaptation. Over time, the original environment (e.g., CPU, operating system,
business rules, external product characteristics) for which the software was
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developed is likely to change. Adaptive maintenance results in modification to
the software to accommodate changes to its external environment.
Enhancement. As software is used, the customer/user will recognize addi-
tional functions that will provide benefit. Perfective maintenance extends the
software beyond its original functional requirements.

Prevention. Computer software deteriorates due to change, and because of
this, preventive maintenance, often called software reengineering, must be con-
ducted to enable the software to serve the needs of its end users. In essence,
preventive maintenance makes changes to computer programs so that they can
be more easily corrected, adapted, and enhanced.

In addition to these support activities, the users of software require continuing sup-
port. In-house technical assistants, telephone-help desks, and application-specific
Web sites are often implemented as part of the support phase.

Today, a growing population of legacy programs! is forcing many companies to
pursue software reengineering strategies (Chapter 30). In a global sense, software
reengineering is often considered as part of business process reengineering.

The phases and related steps described in our generic view of software engineer-
ing are complemented by a number of umbrella activities. Typical activities in this cat-
egory include:

e Software project tracking and control

e Formal technical reviews

e Software quality assurance

e Software configuration management

e Document preparation and production

¢ Reusability management

e Measurement

¢ Risk management

Umbrella activities are applied throughout the software process and are discussed in
Parts Two and Five of this book.

THE SOFTWARE PROCESS

A software process can be characterized as shown in Figure 2.2. A common process
framework is established by defining a small number of framework activities that are
applicable to all software projects, regardless of their size or complexity. A number
of task sets—each a collection of software engineering work tasks, project milestones,

1 The term legacy programs is a euphemism for older, often poorly designed and documented soft-
ware that is business critical and must be supported over many years.
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work products, and quality assurance points—enable the framework activities to be
adapted to the characteristics of the software project and the requirements of the
project team. Finally, umbrella activities—such as software quality assurance, soft-
ware configuration management, and measurement2—overlay the process model.
Umbrella activities are independent of any one framework activity and occur through-
out the process.

In recent years, there has been a significant emphasis on “process maturity.” The
Software Engineering Institute (SEI) has developed a comprehensive model predi-
cated on a set of software engineering capabilities that should be present as organ-
izations reach different levels of process maturity. To determine an organization’s
current state of process maturity, the SEI uses an assessment that results in a five
point grading scheme. The grading scheme determines compliance with a capability
maturity model (CMM) [PAU93] that defines key activities required at different levels
of process maturity. The SEI approach provides a measure of the global effectiveness
of a company's software engineering practices and establishes five process maturity
levels that are defined in the following manner:

Level 1: Initial. The software process is characterized as ad hoc and occa-
sionally even chaotic. Few processes are defined, and success depends on indi-
vidual effort.

Level 2: Repeatable. Basic project management processes are established
to track cost, schedule, and functionality. The necessary process discipline is
in place to repeat earlier successes on projects with similar applications.

2 These topics are discussed in detail in later chapters.
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Level 3: Defined. The software process for both management and engi-
neering activities is documented, standardized, and integrated into an organi-
zationwide software process. All projects use a documented and approved
version of the organization's process for developing and supporting software.
This level includes all characteristics defined for level 2.

Level 4: Managed. Detailed measures of the software process and product
quality are collected. Both the software process and products are quantitatively
understood and controlled using detailed measures. This level includes all char-
acteristics defined for level 3.

Level 5: Optimizing. Continuous process improvement is enabled by quan-
titative feedback from the process and from testing innovative ideas and tech-
nologies. This level includes all characteristics defined for level 4.

The five levels defined by the SEI were derived as a consequence of evaluating
responses to the SEI assessment questionnaire that is based on the CMM. The results
of the questionnaire are distilled to a single numerical grade that provides an indi-
cation of an organization's process maturity.

The SEI has associated key process areas (KPAs) with each of the maturity levels.
The KPAs describe those software engineering functions (e.g., software project plan-
ning, requirements management) that must be present to satisfy good practice at a
particular level. Each KPA is described by identifying the following characteristics:

e Goals—the overall objectives that the KPA must achieve.

e Commitments—requirements (imposed on the organization) that must be met
to achieve the goals or provide proof of intent to comply with the goals.

e Abilities—those things that must be in place (organizationally and technically)
to enable the organization to meet the commitments.

e Activities—the specific tasks required to achieve the KPA function.

e Methods for monitoring implementation—the manner in which the activities
are monitored as they are put into place.

e Methods for verifying implementation—the manner in which proper practice
for the KPA can be verified.

Eighteen KPAs (each described using these characteristics) are defined across the
maturity model and mapped into different levels of process maturity. The following
KPAs should be achieved at each process maturity level:3

Process maturity level 2
e Software configuration management

e Software quality assurance

3 Note that the KPAs are additive. For example, process maturity level 4 contains all level 3 KPAs
plus those noted for level 2.
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e Software subcontract management

¢ Software project tracking and oversight

¢ Software project planning

e Requirements management

Process maturity level 3

e Peer reviews

¢ Intergroup coordination

e Software product engineering

¢ Integrated software management

e Training program

e Organization process definition

¢ Organization process focus

Process maturity level 4

e Software quality management

¢ Quantitative process management

Process maturity level 5

e Process change management

¢ Technology change management

e Defect prevention
Each of the KPAs is defined by a set of key practices that contribute to satisfying its
goals. The key practices are policies, procedures, and activities that must occur before
a key process area has been fully instituted. The SEI defines key indicators as "those
key practices or components of key practices that offer the greatest insight into whether

the goals of a key process area have been achieved." Assessment questions are
designed to probe for the existence (or lack thereof) of a key indicator.

SOFTWARE PROCESS MODELS

To solve actual problems in an industry setting, a software engineer or a team of engi-
neers must incorporate a development strategy that encompasses the process, meth-
ods, and tools layers described in Section 2.1.1 and the generic phases discussed in
Section 2.1.2. This strategy is often referred to as a process model or a software engi-
neering paradigm. A process model for software engineering is chosen based on the
nature of the project and application, the methods and tools to be used, and the con-
trols and deliverables that are required. In an intriguing paper on the nature of the
software process, L. B. S. Raccoon [RAC95] uses fractals as the basis for a discussion
of the true nature of the software process.
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All software development can be characterized as a problem solving loop (Figure
2.3a) in which four distinct stages are encountered: status quo, problem definition,
technical development, and solution integration. Status quo “represents the current
state of affairs” [RAC95]; problem definition identifies the specific problem to be solved;
technical development solves the problem through the application of some technol-
ogy, and solution integration delivers the results (e.g., documents, programs, data,
new business function, new product) to those who requested the solution in the first
place. The generic software engineering phases and steps defined in Section 2.1.2
easily map into these stages.

This problem solving loop applies to software engineering work at many different
levels of resolution. It can be used at the macro level when the entire application is
considered, at a mid-level when program components are being engineered, and
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even at the line of code level. Therefore, a fractal4 representation can be used to pro-
vide an idealized view of process. In Figure 2.3b, each stage in the problem solving
loop contains an identical problem solving loop, which contains still another prob-
lem solving loop (this continues to some rational boundary; for software, a line of
code).

Realistically, it is difficult to compartmentalize activities as neatly as Figure 2.3b
implies because cross talk occurs within and across stages. Yet, this simplified view
leads to a very important idea: regardless of the process model that is chosen for a
software project, all of the stages—status quo, problem definition, technical develop-
ment, and solution integration—coexist simultaneously at some level of detail. Given
the recursive nature of Figure 2.3b, the four stages discussed apply equally to the
analysis of a complete application and to the generation of a small segment of code.

Raccoon [RAC95] suggests a “Chaos model” that describes “software develop-
ment [as] a continuum from the user to the developer to the technology.” As work
progresses toward a complete system, the stages are applied recursively to user needs
and the developer’s technical specification of the software.

In the sections that follow, a variety of different process models for software engi-
neering are discussed. Each represents an attempt to bring order to an inherently
chaotic activity. It is important to remember that each of the models has been char-
acterized in a way that (ideally) assists in the control and coordination of a real soft-
ware project. And yet, at their core, all of the models exhibit characteristics of the
Chaos model.

THE LINEAR SEQUENTIAL MODEL

Sometimes called the classic life cycle or the waterfall model, the linear sequential model
suggests a systematic, sequential approach® to software development that begins at
the system level and progresses through analysis, design, coding, testing, and sup-
port. Figure 2.4 illustrates the linear sequential model for software engineering. Mod-
eled after a conventional engineering cycle, the linear sequential model encompasses
the following activities:

System/information engineering and modeling. Because software is always
part of a larger system (or business), work begins by establishing requirements for
all system elements and then allocating some subset of these requirements to soft-
ware. This system view is essential when software must interact with other elements
such as hardware, people, and databases. System engineering and analysis encom-
pass requirements gathering at the system level with a small amount of top level

4 Fractals were originally proposed for geometric representations. A pattern is defined and then
applied recursively at successively smaller scales; patterns fall inside patterns.

5 Although the original waterfall model proposed by Winston Royce [ROY70] made provision for
“feedback loops,” the vast majority of organizations that apply this process model treat it as if it
were strictly linear.



FIGURE 2.4

The linear
sequential
model

Gpwc:‘

Although the finear
model is often derided
as “old fashioned,” it
remains a reasonable
approach when
requirements are well
understood.

CHAPTER 2 THE PROCESS 29

System/information
engineering

Analysis Code Test

design and analysis. Information engineering encompasses requirements gathering
at the strategic business level and at the business area level.

Software requirements analysis. The requirements gathering process is intensi-
fied and focused specifically on software. To understand the nature of the program(s)
to be built, the software engineer ("analyst") must understand the information domain
(described in Chapter 11) for the software, as well as required function, behavior, per-
formance, and interface. Requirements for both the system and the software are doc-
umented and reviewed with the customer.

Design. Software design is actually a multistep process that focuses on four distinct
attributes of a program: data structure, software architecture, interface representa-
tions, and procedural (algorithmic) detail. The design process translates requirements
into a representation of the software that can be assessed for quality before coding
begins. Like requirements, the design is documented and becomes part of the soft-
ware configuration.

Code generation. The design must be translated into a machine-readable form.
The code generation step performs this task. If design is performed in a detailed man-
ner, code generation can be accomplished mechanistically.

Testing. Once code has been generated, program testing begins. The testing process
focuses on the logical internals of the software, ensuring that all statements have
been tested, and on the functional externals; that is, conducting tests to uncover
errors and ensure that defined input will produce actual results that agree with required
results.

Support. Software will undoubtedly undergo change after it is delivered to the cus-
tomer (a possible exception is embedded software). Change will occur because errors
have been encountered, because the software must be adapted to accommodate
changes in its external environment (e.g., a change required because of a new oper-
ating system or peripheral device), or because the customer requires functional or
performance enhancements. Software support/maintenance reapplies each of the
preceding phases to an existing program rather than a new one.
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The linear sequential model is the oldest and the most widely used paradigm for
software engineering. However, criticism of the paradigm has caused even active
supporters to question its efficacy [HAN95]. Among the problems that are sometimes
encountered when the linear sequential model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so indirectly.
As aresult, changes can cause confusion as the project team proceeds.

2. Iltis often difficult for the customer to state all requirements explicitly. The
linear sequential model requires this and has difficulty accommodating the
natural uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will
not be available until late in the project time-span. A major blunder, if unde-
tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects Bradac [BRA94], found that the linear
nature of the classic life cycle leads to “blocking states” in which some project team
members must wait for other members of the team to complete dependent tasks. In
fact, the time spent waiting can exceed the time spent on productive work! The block-
ing state tends to be more prevalent at the beginning and end of a linear sequential
process.

Each of these problems is real. However, the classic life cycle paradigm has a def-
inite and important place in software engineering work. It provides a template into
which methods for analysis, design, coding, testing, and support can be placed. The
classic life cycle remains a widely used procedural model for software engineering.
While it does have weaknesses, it is significantly better than a haphazard approach
to software development.

THE PROTOTYPING MODEL

Often, a customer defines a set of general objectives for software but does not iden-
tify detailed input, processing, or output requirements. In other cases, the developer
may be unsure of the efficiency of an algorithm, the adaptability of an operating sys-
tem, or the form that human/machine interaction should take. In these, and many
other situations, a prototyping paradigm may offer the best approach.

The prototyping paradigm (Figure 2.5) begins with requirements gathering. Devel-
oper and customer meet and define the overall objectives for the software, identify
whatever requirements are known, and outline areas where further definition is
mandatory. A "quick design" then occurs. The quick design focuses on a representa-
tion of those aspects of the software that will be visible to the customer/user (e.g.,
input approaches and output formats). The quick design leads to the construction of
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a prototype. The prototype is evaluated by the customer/user and used to refine
requirements for the software to be developed. Iteration occurs as the prototype is
tuned to satisfy the needs of the customer, while at the same time enabling the devel-
oper to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements.
If a working prototype is built, the developer attempts to use existing program frag-
ments or applies tools (e.g., report generators, window managers) that enable work-
ing programs to be generated quickly.

But what do we do with the prototype when it has served the purpose just
described? Brooks [BRO75] provides an answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awkward
inuse or all three. There is no alternative but to start again, smarting but smarter, and build
a redesigned version in which these problems are solved . . . When a new system concept
or new technology is used, one has to build a system to throw away, for even the best plan-
ning is not so omniscient as to get it right the first time. The management question, there-
fore, is not whether to build a pilot system and throw it away. You will do that. The only
question is whether to plan in advance to build a throwaway, or to promise to deliver the

throwaway to customers . . .

The prototype can serve as "the first system." The one that Brooks recommends
we throw away. But this may be an idealized view. It is true that both customers and
developers like the prototyping paradigm. Users get a feel for the actual system and
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developers get to build something immediately. Yet, prototyping can also be prob-
lematic for the following reasons:

1. The customer sees what appears to be a working version of the software,
unaware that the prototype is held together “with chewing gum and baling
wire,” unaware that in the rush to get it working no one has considered over-
all software quality or long-term maintainability. When informed that the
product must be rebuilt so that high levels of quality can be maintained, the
customer cries foul and demands that "a few fixes" be applied to make the
prototype a working product. Too often, software development management
relents.

2. The developer often makes implementation compromises in order to get a
prototype working quickly. An inappropriate operating system or program-
ming language may be used simply because it is available and known; an
inefficient algorithm may be implemented simply to demonstrate capability.
After a time, the developer may become familiar with these choices and for-
get all the reasons why they were inappropriate. The less-than-ideal choice
has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-
ware engineering. The key is to define the rules of the game at the beginning; that is,
the customer and developer must both agree that the prototype is built to serve as a
mechanism for defining requirements. It is then discarded (at least in part) and the
actual software is engineered with an eye toward quality and maintainability.

THE RAD MODEL

Rapid application development (RAD) is an incremental software development process
model that emphasizes an extremely short development cycle. The RAD model is a
“high-speed” adaptation of the linear sequential model in which rapid development
is achieved by using component-based construction. If requirements are well under-
stood and project scope is constrained, the RAD process enables a development team
to create a “fully functional system” within very short time periods (e.g., 60 to 90 days)
[MAR91]. Used primarily for information systems applications, the RAD approach
encompasses the following phases [KER94]:

Business modeling. The information flow among business functions is modeled in
a way that answers the following questions: What information drives the business
process? What information is generated? Who generates it? Where does the infor-
mation go? Who processes it? Business modeling is described in more detail in Chap-
ter 10.

Data modeling. The information flow defined as part of the business modeling phase
is refined into a set of data objects that are needed to support the business. The char-
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acteristics (called attributes) of each object are identified and the relationships between
these objects defined. Data modeling is considered in Chapter 12.

Process modeling. The data objects defined in the data modeling phase are trans-
formed to achieve the information flow necessary to implement a business function.
Processing descriptions are created for adding, modifying, deleting, or retrieving a
data object.

Application generation. RAD assumes the use of fourth generation techniques
(Section 2.10). Rather than creating software using conventional third generation
programming languages the RAD process works to reuse existing program compo-
nents (when possible) or create reusable components (when necessary). In all cases,
automated tools are used to facilitate construction of the software.

Testing and turnover. Since the RAD process emphasizes reuse, many of the pro-
gram components have already been tested. This reduces overall testing time. How-
ever, new components must be tested and all interfaces must be fully exercised.
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The RAD process model is illustrated in Figure 2.6. Obviously, the time constraints
imposed on a RAD project demand “scalable scope” [KER94]. If a business applica-
tion can be modularized in a way that enables each major function to be completed
in less than three months (using the approach described previously), it is a candidate
for RAD. Each major function can be addressed by a separate RAD team and then
integrated to form a whole.

Like all process models, the RAD approach has drawbacks [BUT94]:

e For large but scalable projects, RAD requires sufficient human resources to
create the right number of RAD teams.

e RAD requires developers and customers who are committed to the rapid-fire
activities necessary to get a system complete in a much abbreviated time
frame. If commitment is lacking from either constituency, RAD projects will
fail.

e Not all types of applications are appropriate for RAD. If a system cannot be
properly modularized, building the components necessary for RAD will be
problematic. If high performance is an issue and performance is to be
achieved through tuning the interfaces to system components, the RAD
approach may not work.

e RAD is not appropriate when technical risks are high. This occurs when a new
application makes heavy use of new technology or when the new software
requires a high degree of interoperability with existing computer programs.

EVOLUTIONARY SOFTWARE PROCESS MODELS

There is growing recognition that software, like all complex systems, evolves over a
period of time [GIL88]. Business and product requirements often change as devel-
opment proceeds, making a straight path to an end product unrealistic; tight market
deadlines make completion of a comprehensive software product impossible, but a
limited version must be introduced to meet competitive or business pressure; a set
of core product or system requirements is well understood, but the details of prod-
uct or system extensions have yet to be defined. In these and similar situations, soft-
ware engineers need a process model that has been explicitly designed to
accommodate a product that evolves over time.

The linear sequential model (Section 2.4) is designed for straight-line develop-
ment. In essence, this waterfall approach assumes that a complete system will be
delivered after the linear sequence is completed. The prototyping model (Section
2.5) is designed to assist the customer (or developer) in understanding require-
ments. In general, it is not designed to deliver a production system. The evolu-
tionary nature of software is not considered in either of these classic software
engineering paradigms.
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Evolutionary models are iterative. They are characterized in a manner that enables
software engineers to develop increasingly more complete versions of the software.

2.7.1 The Incremental Model

The incremental model combines elements of the linear sequential model (applied
repetitively) with the iterative philosophy of prototyping. Referring to Figure 2.7, the
incremental model applies linear sequences in a staggered fashion as calendar time
progresses. Each linear sequence produces a deliverable “increment” of the software
[MDE93]. For example, word-processing software developed using the incremental
paradigm might deliver basic file management, editing, and document production
functions in the first increment; more sophisticated editing and document production
capabilities in the second increment; spelling and grammar checking in the third
increment; and advanced page layout capability in the fourth increment. It should be
noted that the process flow for any increment can incorporate the prototyping para-
digm.

When an incremental model is used, the first increment is often a core product.
That is, basic requirements are addressed, but many supplementary features (some
known, others unknown) remain undelivered. The core product is used by the cus-
tomer (or undergoes detailed review). As a result of use and/or evaluation, a plan is
developed for the next increment. The plan addresses the modification of the core
product to better meet the needs of the customer and the delivery of additional
features and functionality. This process is repeated following the delivery of each
increment, until the complete product is produced.

System/information
engineering

Increment 1

Analysis f==| Design Code B=| Test De]ivery of
1st increment
Increment 2 | Analysis f==| Design Code Test Delivery of
2nd increment
Increment 3 | Analysis f=| Design =] Code Test De!i"efy of
3rd increment
Increment 4 | Analysis f=| Design Code f—{ Test DEA“VEFY of
4th increment

Calendar time
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The incremental process model, like prototyping (Section 2.5) and other evolu-
tionary approaches, is iterative in nature. But unlike prototyping, the incremental
model focuses on the delivery of an operational product with each increment. Early
increments are stripped down versions of the final product, but they do provide capa-
bility that serves the user and also provide a platform for evaluation by the user.

Incremental development is particularly useful when staffing is unavailable for a
complete implementation by the business deadline that has been established for the
project. Early increments can be implemented with fewer people. If the core product
is well received, then additional staff (if required) can be added to implement the next
increment. In addition, increments can be planned to manage technical risks. For
example, a major system might require the availability of new hardware that is under
development and whose delivery date is uncertain. It might be possible to plan early
increments in a way that avoids the use of this hardware, thereby enabling partial
functionality to be delivered to end-users without inordinate delay.

2.7.2 The Spiral Model

The spiral model, originally proposed by Boehm [BOES88], is an evolutionary software
process model that couples the iterative nature of prototyping with the controlled and
systematic aspects of the linear sequential model. It provides the potential for rapid
development of incremental versions of the software. Using the spiral model, soft-
ware is developed in a series of incremental releases. During early iterations, the
incremental release might be a paper model or prototype. During later iterations,
increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a number of framework activities, also called task
regions.6 Typically, there are between three and six task regions. Figure 2.8 depicts a
spiral model that contains six task regions:

¢ Customer communication—tasks required to establish effective communi-
cation between developer and customer.

¢ Planning—tasks required to define resources, timelines, and other project-
related information.

e Risk analysis—tasks required to assess both technical and management
risks.

Engineering—tasks required to build one or more representations of the
application.

Construction and release—tasks required to construct, test, install, and
provide user support (e.g., documentation and training).

6 The spiral model discussed in this section is a variation on the model proposed by Boehm. For
further information on the original spiral model, see [BOE88]. More recent discussion of Boehm'’s
spiral model can be found in [BOE98].
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e Customer evaluation—tasks required to obtain customer feedback based
on evaluation of the software representations created during the engineering
stage and implemented during the installation stage.

Each of the regions is populated by a set of work tasks, called a task set, that are
adapted to the characteristics of the project to be undertaken. For small projects, the
number of work tasks and their formality is low. For larger, more critical projects,
each task region contains more work tasks that are defined to achieve a higher level
of formality. In all cases, the umbrella activities (e.g., software configuration man-
agement and software quality assurance) noted in Section 2.2 are applied.

As this evolutionary process begins, the software engineering team moves around
the spiral in a clockwise direction, beginning at the center. The first circuit around
the spiral might result in the development of a product specification; subsequent
passes around the spiral might be used to develop a prototype and then progressively
more sophisticated versions of the software. Each pass through the planning region
results in adjustments to the project plan. Cost and schedule are adjusted based on
feedback derived from customer evaluation. In addition, the project manager adjusts
the planned number of iterations required to complete the software.

Unlike classical process models that end when software is delivered, the spiral
model can be adapted to apply throughout the life of the computer software. An alter-
native view of the spiral model can be considered by examining the project entry point
axis, also shown in Figure 2.8. Each cube placed along the axis can be used to rep-
resent the starting point for different types of projects. A “concept development
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project” starts at the core of the spiral and will continue (multiple iterations occur
along the spiral path that bounds the central shaded region) until concept develop-
ment is complete. If the concept is to be developed into an actual product, the process
proceeds through the next cube (new product development project entry point) and
a “new development project” is initiated. The new product will evolve through a num-
ber of iterations around the spiral, following the path that bounds the region that has
somewhat lighter shading than the core. In essence, the spiral, when characterized
in this way, remains operative until the software is retired. There are times when the
process is dormant, but whenever a change is initiated, the process starts at the appro-
priate entry point (e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems
and software. Because software evolves as the process progresses, the developer and
customer better understand and react to risks at each evolutionary level. The spiral model
uses prototyping as a risk reduction mechanism but, more important, enables the devel-
oper to apply the prototyping approach at any stage in the evolution of the product. It
maintains the systematic stepwise approach suggested by the classic life cycle but incor-
porates it into an iterative framework that more realistically reflects the real world. The
spiral model demands a direct consideration of technical risks at all stages of the proj-
ect and, if properly applied, should reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to
convince customers (particularly in contract situations) that the evolutionary approach
is controllable. It demands considerable risk assessment expertise and relies on this
expertise for success. If a major risk is not uncovered and managed, problems will
undoubtedly occur. Finally, the model has not been used as widely as the linear
sequential or prototyping paradigms. It will take a number of years before efficacy of
this important paradigm can be determined with absolute certainty.

2.7.3 The WINWIN Spiral Model

The spiral model discussed in Section 2.7.2 suggests a framework activity that
addresses customer communication. The objective of this activity is to elicit project
requirements from the customer. In an ideal context, the developer simply asks the
customer what is required and the customer provides sufficient detail to proceed.
Unfortunately, this rarely happens. In reality, the customer and the developer enter
into a process of negotiation, where the customer may be asked to balance func-
tionality, performance, and other product or system characteristics against cost and
time to market.

The best negotiations strive for a “win-win” result.” That is, the customer wins by
getting the system or product that satisfies the majority of the customer’s needs and
the developer wins by working to realistic and achievable budgets and deadlines.

7 Dozens of books have been written on negotiating skills (e.g., [FIS91], [DON96], [FAR97]). It is
one of the more important things that a young (or old) engineer or manager can learn. Read one.
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Boehm’s WINWIN spiral model [BOE98] defines a set of negotiation activities at
the beginning of each pass around the spiral. Rather than a single customer com-
munication activity, the following activities are defined:

1. Identification of the system or subsystem's key “stakeholders.”8
2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set of
win-win conditions for all concerned (including the software project team).

Successful completion of these initial steps achieves a win-win result, which becomes
the key criterion for proceeding to software and system definition. The WINWIN spi-
ral model is illustrated in Figure 2.9.

In addition to the emphasis placed on early negotiation, the WINWIN spiral model
introduces three process milestones, called anchor points [BOE96], that help estab-
lish the completion of one cycle around the spiral and provide decision milestones
before the software project proceeds.

In essence, the anchor points represent three different views of progress as the
project traverses the spiral. The first anchor point, life cycle objectives (LCO), defines
a set of objectives for each major software engineering activity. For example, as part
of LCO, a set of objectives establishes the definition of top-level system/product
requirements. The second anchor point, lifé cycle architecture (LCA), establishes objec-
tives that must be met as the system and software architecture is defined. For exam-
ple, as part of LCA, the software project team must demonstrate that it has evaluated
the applicability of off-the-shelf and reusable software components and considered
their impact on architectural decisions. Initial operational capability (10C) is the third

8 A stakeholder is anyone in the organization that has a direct business interest in the system or

product to be built and will be rewarded for a successful outcome or criticized if the effort fails.
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anchor point and represents a set of objectives associated with the preparation of the
software for installation/distribution, site preparation prior to installation, and assis-
tance required by all parties that will use or support the software.

2.7.4 The Concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, has
been described in the following manner by Davis and Sitaram [DAV94]:

Project managers who track project status in terms of the major phases [of the classic life
cycle] have no idea of the status of their projects. These are examples of trying to track
extremely complex sets of activities using overly simple models. Note that although . . . [a
large] project is in the coding phase, there are personnel on the project involved in activities
typically associated with many phases of development simultaneously. For example,
... personnel are writing requirements, designing, coding, testing, and integration testing
[all at the same time]. Software engineering process models by Humphrey and Kellner
[[HUMS89], [KEL89]] have shown the concurrency that exists for activities occurring during
any one phase. Kellner's more recent work [KEL91] uses statecharts [a notation that repre-
sents the states of a process] to represent the concurrent relationship existent among activ-
ities associated with a specific event (e.g., a requirements change during late development),
but fails to capture the richness of concurrency that exists across all software development
and management activities in the project. . . . Most software development process models
are driven by time; the later it is, the later in the development process you are. [A concur-
rent process model] is driven by user needs, management decisions, and review results.

The concurrent process model can be represented schematically as a series of major
technical activities, tasks, and their associated states. For example, the engineering
activity defined for the spiral model (Section 2.7.2) is accomplished by invoking the
following tasks: prototyping and/or analysis modeling, requirements specification,
and design.?

Figure 2.10 provides a schematic representation of one activity with the concur-
rent process model. The activity—analysis—may be in any one of the states!0 noted
at any given time. Similarly, other activities (e.g., design or customer communica-
tion) can be represented in an analogous manner. All activities exist concurrently but
reside in different states. For example, early in a project the customer communication
activity (not shown in the figure) has completed its first iteration and exists in the
awaiting changes state. The analysis activity (which existed in the none state while
initial customer communication was completed) now makes a transition into the
under development state. If, however, the customer indicates that changes in
requirements must be made, the analysis activity moves from the under develop-
ment state into the awaiting changes state.

The concurrent process model defines a series of events that will trigger transi-
tions from state to state for each of the software engineering activities. For example,

9 It should be noted that analysis and design are complex tasks that require substantial discussion.
Parts Three and Four of this book consider these topics in detail.
10 A state is some externally observable mode of behavior.



FIGURE 2.10
One element of
the concurrent
process model

CHAPTER 2 THE PROCESS 41

Analysis activity
e 2
Under
development
Awaiting
changes

Under
revision

Represents a stafe of a
software engineered activity

during early stages of design, an inconsistency in the analysis model is uncovered.
This generates the event analysis model correction which will trigger the analysis activ-
ity from the done state into the awaiting changes state.

The concurrent process model is often used as the paradigm for the develop-
ment of client/server!! applications (Chapter 28). A client/server system is com-
posed of a set of functional components. When applied to client/server, the
concurrent process model defines activities in two dimensions [SHE94]: a system
dimension and a component dimension. System level issues are addressed using
three activities: design, assembly, and use. The component dimension is addressed
with two activities: design and realization. Concurrency is achieved in two ways:
(1) system and component activities occur simultaneously and can be modeled
using the state-oriented approach described previously; (2) a typical client/server
application is implemented with many components, each of which can be designed
and realized concurrently.

In reality, the concurrent process model is applicable to all types of software devel-
opment and provides an accurate picture of the current state of a project. Rather than

11 In a client/server applications, software functionality is divided between clients (normally PCs)

and a server (a more powerful computer) that typically maintains a centralized database.
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confining software engineering activities to a sequence of events, it defines a net-
work of activities. Each activity on the network exists simultaneously with other activ-
ities. Events generated within a given activity or at some other place in the activity
network trigger transitions among the states of an activity.

COMPONENT-BASED DEVELOPMENT

Object-oriented technologies (Part Four of this book) provide the technical frame-
work for a component-based process model for software engineering. The object-
oriented paradigm emphasizes the creation of classes that encapsulate both data and
the algorithms used to manipulate the data. If properly designed and implemented,
object-oriented classes are reusable across different applications and computer-based
system architectures.

The component-based development (CBD) model (Figure 2.11) incorporates many
of the characteristics of the spiral model. It is evolutionary in nature [NIE92], demand-
ing an iterative approach to the creation of software. However, the component-based
development model composes applications from prepackaged software components
(called classes).

The engineering activity begins with the identification of candidate classes. This
is accomplished by examining the data to be manipulated by the application and the
algorithms that will be applied to accomplish the manipulation.!2 Corresponding data
and algorithms are packaged into a class.

Identify
candidate
/ components
. Risk
Planning analysis
Construct Look up
H nth iteration components
of system in library
Put new Extract
components components
in library if available
Engineering/ Build
construction & release components
if unavailable

12 This is a simplified description of class definition. For a more detailed discussion, see Chapter 20.
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Classes created in past software engineering projects are stored in a class
library or repository (Chapter 31). Once candidate classes are identified, the class
library is searched to determine if these classes already exist. If they do, they are
extracted from the library and reused. If a candidate class does not reside in the
library, it is engineered using object-oriented methods (Chapters 21-23). The first
iteration of the application to be built is then composed, using classes extracted
from the library and any new classes built to meet the unique needs of the appli-
cation. Process flow then returns to the spiral and will ultimately re-enter the
component assembly iteration during subsequent passes through the engineer-
ing activity.

The component-based development model leads to software reuse, and reusabil-
ity provides software engineers with a number of measurable benefits. Based on stud-
ies of reusability, QSM Associates, Inc., reports component assembly leads to a 70
percent reduction in development cycle time; an 84 percent reduction in project cost,
and a productivity index of 26.2, compared to an industry norm of 16.9. [YOU94]
Although these results are a function of the robustness of the component library, there
is little question that the component-based development model provides significant
advantages for software engineers.

The unified software development process [JAC99] is representative of a number of
component-based development models that have been proposed in the industry.
Using the Unified Modeling Language (UML), the unified process defines the compo-
nents that will be used to build the system and the interfaces that will connect the
components. Using a combination of iterative and incremental development, the uni-
fied process defines the function of the system by applying a scenario-based approach
(from the user point of view). It then couples function with an architectural frame-
work that identifies the form the the software will take.

THE FORMAL METHODS MODEL

The formal methods model encompasses a set of activities that leads to formal math-
ematical specification of computer software. Formal methods enable a software engi-
neer to specify, develop, and verify a computer-based system by applying a rigorous,
mathematical notation. A variation on this approach, called cleanroom software engi-
neering [MIL87, DYE92], is currently applied by some software development organi-
zations.

When formal methods (Chapters 25 and 26) are used during development, they
provide a mechanism for eliminating many of the problems that are difficult to
overcome using other software engineering paradigms. Ambiguity, incomplete-
ness, and inconsistency can be discovered and corrected more easily, not through
ad hoc review but through the application of mathematical analysis. When formal
methods are used during design, they serve as a basis for program verification and



2.10

PART ONE THE PRODUCT AND THE PROCESS

therefore enable the software engineer to discover and correct errors that might
go undetected.

Although it is not destined to become a mainstream approach, the formal meth-
ods model offers the promise of defect-free software. Yet, the following concerns
about its applicability in a business environment have been voiced:

1. The development of formal models is currently quite time consuming and
expensive.

2. Because few software developers have the necessary background to apply
formal methods, extensive training is required.

3. [Itisdifficult to use the models as a communication mechanism for techni-
cally unsophisticated customers.

These concerns notwithstanding, it is likely that the formal methods approach will
gain adherents among software developers who must build safety-critical software
(e.g., developers of aircraft avionics and medical devices) and among developers that
would suffer severe economic hardship should software errors occur.

FOURTH GENERATION TECHNIQUES

The term fourth generation techniques (4GT) encompasses a broad array of soft-
ware tools that have one thing in common: each enables the software engineer
to specify some characteristic of software at a high level. The tool then automat-
ically generates source code based on the developer's specification. There is lit-
tle debate that the higher the level at which software can be specified to a machine,
the faster a program can be built. The 4GT paradigm for software engineering
focuses on the ability to specify software using specialized language forms or a
graphic notation that describes the problem to be solved in terms that the cus-
tomer can understand.

Currently, a software development environment that supports the 4GT paradigm
includes some or all of the following tools: nonprocedural languages for database
query, report generation, data manipulation, screen interaction and definition, code
generation; high-level graphics capability; spreadsheet capability, and automated
generation of HTML and similar languages used for Web-site creation using advanced
software tools. Initially, many of the tools noted previously were available only for
very specific application domains, but today 4GT environments have been extended
to address most software application categories.

Like other paradigms, 4GT begins with a requirements gathering step. Ideally, the
customer would describe requirements and these would be directly translated into
an operational prototype. But this is unworkable. The customer may be unsure of
what is required, may be ambiguous in specifying facts that are known, and may be
unable or unwilling to specify information in a manner that a 4GT tool can consume.



QA'pwcss

Even though you use a
467, you still have to
emphasize solid
software engineering
by doing analysis,
design, and festing.

CHAPTER 2 THE PROCESS 45

For this reason, the customer/developer dialog described for other process models
remains an essential part of the 4GT approach.

For small applications, it may be possible to move directly from the requirements
gathering step to implementation using a nonprocedural fourth generation language
(4GL) or a model composed of a network of graphical icons. However, for larger
efforts, it is necessary to develop a design strategy for the system, even if a 4GL is to
be used. The use of 4GT without design (for large projects) will cause the same diffi-
culties (poor quality, poor maintainability, poor customer acceptance) that have been
encountered when developing software using conventional approaches.

Implementation using a 4GL enables the software developer to represent desired
results in a manner that leads to automatic generation of code to create those results.
Obviously, a data structure with relevant information must exist and be readily acces-
sible by the 4GL.

To transform a 4GT implementation into a product, the developer must conduct
thorough testing, develop meaningful documentation, and perform all other solution
integration activities that are required in other software engineering paradigms. In
addition, the 4GT developed software must be built in a manner that enables main-
tenance to be performed expeditiously.

Like all software engineering paradigms, the 4GT model has advantages and dis-
advantages. Proponents claim dramatic reduction in software development time and
greatly improved productivity for people who build software. Opponents claim that
current 4GT tools are not all that much easier to use than programming languages,
that the resultant source code produced by such tools is "inefficient,” and that the
maintainability of large software systems developed using 4GT is open to question.

There is some merit in the claims of both sides and it is possible to summarize the
current state of 4GT approaches:

1. The use of 4GT is a viable approach for many different application areas.
Coupled with computer-aided software engineering tools and code genera-
tors, 4GT offers a credible solution to many software problems.

2. Data collected from companies that use 4GT indicate that the time required
to produce software is greatly reduced for small and intermediate applica-
tions and that the amount of design and analysis for small applications is
also reduced.

3. However, the use of 4GT for large software development efforts demands
as much or more analysis, design, and testing (software engineering activi-
ties) to achieve substantial time savings that result from the elimination of
coding.

To summarize, fourth generation techniques have already become an important
part of software engineering. When coupled with component-based development
approaches (Section 2.8), the 4GT paradigm may become the dominant approach to
software development.
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PROCESS TECHNOLOGY

The process models discussed in the preceding sections must be adapted for use by
a software project team. To accomplish this, process technology tools have been
developed to help software organizations analyze their current process, organize
work tasks, control and monitor progress, and manage technical quality [BAN95].

Process technology tools allow a software organization to build an automated
model of the common process framework, task sets, and umbrella activities discussed
in Section 2.3. The model, normally represented as a network, can then be analyzed
to determine typical work flow and examine alternative process structures that might
lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can
be used to allocate, monitor, and even control all software engineering tasks defined
as part of the process model. Each member of a software project team can use such
tools to develop a checklist of work tasks to be performed, work products to be pro-
duced, and quality assurance activities to be conducted. The process technology tool
can also be used to coordinate the use of other computer-aided software engineer-
ing tools (Chapter 31) that are appropriate for a particular work task.

PRODUCT AND PROCESS

If the process is weak, the end product will undoubtedly suffer, but an obsessive over-
reliance on process is also dangerous. In a brief essay, Margaret Davis [DAV95] com-
ments on the duality of product and process:

About every ten years, give or take five, the software community redefines "the problem"
by shifting its focus from product issues to process issues. Thus, we have embraced struc-
tured programming languages (product) followed by structured analysis methods (process)
followed by data encapsulation (product) followed by the current emphasis on the Soft-
ware Engineering Institute's Software Development Capability Maturity Model (process).

While the natural tendency of a pendulum is to come to rest at a point midway between
two extremes, the software community's focus constantly shifts because new force is
applied when the last swing fails. These swings are harmful in and of themselves because
they confuse the average software practitioner by radically changing what it means to per-
form the job let alone perform it well. The swings also do not solve "the problem" for they
are doomed to fail as long as product and process are treated as forming a dichotomy
instead of a duality.

There is precedence in the scientific community to advance notions of duality when
contradictions in observations cannot be fully explained by one competing theory or
another. The dual nature of light, which seems to be simultaneously particle and wave,
has been accepted since the 1920's when Louis de Broglie proposed it. I believe that the
observations we can make on the artifacts of software and its development demonstrate
a fundamental duality between product and process. You can never derive or understand
the full artifact, its context, use, meaning, and worth if you view it as only a process or
only a product . . .
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All of human activity may be a process, but each of us derives a sense of self worth from
those activities that result in a representation or instance that can be used or appreciated
either by more than one person, used over and over, or used in some other context not
considered. That is, we derive feelings of satisfaction from reuse of our products by our-
selves or others.

Thus, while the rapid assimilation of reuse goals into software development potentially
increases the satisfaction software practitioners derive from their work, it also increases
the urgency for acceptance of the duality of product and process. Thinking of a reusable
artifact as only product or only process either obscures the context and ways to use it or
obscures the fact that each use results in product that will, in turn, be used as input to some
other software development activity. Taking one view over the other dramatically reduces
the opportunities for reuse and, hence, loses the opportunity for increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as they do
from the end product. An artist enjoys the brush strokes as much the framed result.
A writer enjoys the search for the proper metaphor as much as the finished book. A
creative software professional should also derive as much satisfaction from the process
as the end-product.

The work of software people will change in the years ahead. The duality of prod-
uct and process is one important element in keeping creative people engaged as the
transition from programming to software engineering is finalized.

SUMMARY

Software engineering is a discipline that integrates process, methods, and tools for
the development of computer software. A number of different process models for
software engineering have been proposed, each exhibiting strengths and weaknesses,
but all having a series of generic phases in common. The principles, concepts, and
methods that enable us to perform the process that we call software engineering are
considered throughout the remainder of this book.
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PROBLEMS AND POINTS TO PONDER

2.1. Figure 2.1 places the three software engineering layers on top of a layer enti-
tled a quality focus. This implies an organization quality program such as Total Qual-
ity Management. Do a bit of research and develop an outline of the key tenets of a
Total Quality Management program.

2.2. Isthere ever a case when the generic phases of the software engineering process
don't apply? If so, describe it.

2.3. The SEI's capability maturity model is an evolving document. Do some research
and determine if any new KPAs have been added since the publication of this book.

2.4. The Chaos model suggests that a problem solving loop can be applied at any
degree of resolution. Discuss the way in which you would apply the loop to (1) under-
stand requirements for a word-processing product; (2) develop an advanced spelling/
grammar checking component for the word processor; (3) generate code for a pro-
gram module that determines the subject, predicate, and object in an English lan-
guage sentence.

2.5. Which of the software engineering paradigms presented in this chapter do you
think would be most effective? Why?

2.6. Provide five examples of software development projects that would be amenable
to prototyping. Name two or three applications that would be more difficult to
prototype.

2.7. The RAD model is often tied to CASE tools. Research the literature and provide
a summary of a typical CASE tool that supports RAD.



50

PART ONE THE PRODUCT AND THE PROCESS

2.8. Propose a specific software project that would be amenable to the incremental
model. Present a scenario for applying the model to the software.

2.9. Asyou move outward along the process flow path of the spiral model, what can
you say about the software that is being developed or maintained?

2.10. Many people believe that the only way in which order of magnitude improve-
ments in software quality and productivity will be achieved is through component-
based development. Find three or four recent papers on the subject and summarize
them for the class.

2.11. Describe the concurrent development model in your own words.
2.12. Provide three examples of fourth generation techniques.

2.13. Which is more important—the product or the process?

FURTHER READINGS AND INFORMATION SOURCES

The current state of the art in software engineering can best be determined from
monthly publications such as IEEE Software, Computer, and the IEEE Transactions on
Software Engineering. Industry periodicals such as Application Development Trends,
Cutter IT Journal and Software Development often contain articles on software engi-
neering topics. The discipline is ‘summarized’ every year in the Proceedings of the Inter-
national Conference on Software Engineering, sponsored by the IEEE and ACM and is
discussed in depth in journals such as ACM Transactions on Software Engineering and
Methodology, ACM Software Engineering Notes, and Annals of Software Engineering.

Many software engineering books have been published in recent years. Some pre-
sent an overview of the entire process while others delve into a few important top-
ics to the exclusion of others. Three anthologies that cover a wide range of software
engineering topics are

Keyes, J., (ed.), Software Engineering Productivily Handbook, McGraw-Hill, 1993.

McDermid, J., (ed.), Software Engineer’s Reference Book, CRC Press, 1993.

Marchiniak, J.J. (ed.), Encyclopedia of Software Engineering, Wiley, 1994.

Gautier (Distributed Engineering of Software, Prentice-Hall, 1996) provides suggestions
and guidelines for organizations that must develop software across geographically
dispersed locations.

On the lighter side, a book by Robert Glass (Software Conflict, Yourdon Press, 1991)
presents amusing and controversial essays on software and the software engineer-
ing process. Pressman and Herron (Software Shock, Dorset House, 1991) consider
software and its impact on individuals, businesses, and government.

The Software Engineering Institute (SEI is located at Carnegie-Mellon University)
has been chartered with the responsibility of sponsoring a software engineering mono-
graph series. Practitioners from industry, government, and academia are contribut-
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ing important new work. Additional software engineering research is conducted by
the Software Productivity Consortium.

A wide variety of software engineering standards and procedures have been pub-
lished over the past decade. The IEEE Software Engineering Standards contains stan-
dards that cover almost every important aspect of the technology. ISO 9000-3
guidelines provide guidance for software organizations that require registration to
the ISO 9001 quality standard. Other software engineering standards can be obtained
from the Department of Defense, the FAA, and other government and nonprofit
agencies. Fairclough (Software Engineering Guides, Prentice-Hall, 1996) provides a
detailed reference to software engineering standards produced by the European Space
Agency (ESA).

A wide variety of information sources on software engineering and the software
process is available on the Internet. An up-to-date list of World Wide Web references
that are relevant to the software process can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/process.mhtml






MANAGING
' SOFTWARE PROJECTS

consider the management techniques required to plan, organ-
ize, monitor, and control software projects. In the chapters that
follow, you'll get answers to the following questions:

In this part of Software Engineering: A Practitioner’s Approach, we

e How must the people, process, and problem be managed
during a software project?

e What are software metrics and how can they be used to
manage a software project and the software process?

e How does a software team generate reliable estimates of
effort, cost, and project duration?

e What techniques can be used to formally assess the risks
that can have an impact on project success?

e How does a software project manager select the set of
software engineering work tasks?

e How is a project schedule created?

e How is quality defined so that it can be controlled?
e What is software quality assurance?

e Why are formal technical reviews so important?

e How is change managed during the development of
computer software and after delivery to the customer?

Once these questions are answered, you'll be better prepared to
manage software projects in a way that will lead to timely delivery
of a high-quality product.
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PROJECT MANAGEMENT

KEY n the preface to his book on software project management, Meiler Page-

CONCEPTS

aitical procfices .. 74 engineering consultants:

common process

Jones [PAG85] makes a statement that can be echoed by many software

framework . . .. .. 70 I've visited dozens of commercial shops, both good and bad, and I've observed scores

Kool tauhon 65 of data processing managers, again, both good and bad. Too often, I've watched in
problom horror as these managers futilely struggled through nightmarish projects, squirmed
decomposition .. . 67 under impossible deadlines, or delivered systems that outraged their users and went
process on to devour huge chunks of maintenance time.

et What Page-Jones describes are symptoms that result from an array of man-
scope........... 67 agement and technical problems. However, if a post mortem were to be con-
software team .. 60 ducted for every project, it is very likely that a consistent theme would be
team leader . . . .. 59 encountered: project management was weak.

team structure. . . 60 In this chapter and the six that follow, we consider the key concepts that

team toxicity. . . . 63
W5HH principle .. 73

lead to effective software project management. This chapter considers basic
software project management concepts and principles. Chapter 4 presents

process and project metrics, the basis for effective management decision mak-
ing. The techniques that are used to estimate cost and resource requirements
and establish an effective project plan are discussed in Chapter 5. The man-

QUICK What is it? Although mony of us
LOOK (in our darker moments) take Dil-

remcins a very necessary cctivity when computer-
based systems and products are built. Project
maonagement involves the plonning, monitoring,

coordinate the interface between the business cnd
the software professionals.

bert's view of “‘management,” it  Why is it important? Building computer software is

a complex undertaking, particularly if it involves
maomy people working over a relatively long time.
That's why software projects need to be momaged.

ond control of the people, process, ond events that ~ What are the steps? Understand the four P's—peo-

occur as software evolves from a prelimincry con-
cept to an operational implementation.

Who does it? Everyone "mancages” to some extent,
but the scope of management activities varies
with the person doing it. A software engineer mom-
ages her day-to-day activities, planning, moni-
toring, and controlling technical tasks. Project
managers plan, monitor, and control the work of
a team of software engineers. Senior managers

ple, product, process, and project. People must be
organized to perform software work effectively.
Communication with the customer must occur so
that product scope and requirements are under-
stood. A process must be selected that is appro-
pricate for the people and the product. The project
must be planned by estimating effort cand calen-
dar time to accomplish work tasks: defining work
products, establishing quality checkpoints, cnd
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establishing mechomnisms to mon-
itor ond control work defined by
the plan.

LOOK

What is the work product? A project plom is pro-
duced as management activities commence. The
plan defines the process and tasks to be con-
ducted, the people who will do the work, and the
mechanisms for assessing risks, controlling

How do I ensure that I've done it right? Youre
never completely sure that the project plom is right
until you've delivered a high-quality product on
time ond within budget. However, a project mom-
ager does it right when he encourages software
people to work together as an effective team,
focusing their attention on customer needs and
product quality.

change, and evaluating quality.

3.1
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“There exists
enormous variability
in the ability of
different people to
perform
programming
tasks.”

Bill Curtis

agement activities that lead to effective risk monitoring, mitigation, and management
are presented in Chapter 6. Chapter 7 discusses the activities that are required to
define project tasks and establish a workable project schedule. Finally, Chapters 8
and 9 consider techniques for ensuring quality as a project is conducted and con-
trolling changes throughout the life of an application.

THE MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product,
process, and project. The order is not arbitrary. The manager who forgets that soft-
ware engineering work is an intensely human endeavor will never have success in
project management. A manager who fails to encourage comprehensive customer
communication early in the evolution of a project risks building an elegant solution
for the wrong problem. The manager who pays little attention to the process runs the
risk of inserting competent technical methods and tools into a vacuum. The manager
who embarks without a solid project plan jeopardizes the success of the product.

3.1.1

The cultivation of motivated, highly skilled software people has been discussed since
the 1960s (e.g., [COU8O], [WIT94], [DEM98]). In fact, the “people factor” is so impor-
tant that the Software Engineering Institute has developed a people management capa-
bility maturity model (PM-CMM), “to enhance the readiness of software organizations
to undertake increasingly complex applications by helping to attract, grow, motivate,
deploy, and retain the talent needed to improve their software development capabil-
ity” [CUR94].

The people management maturity model defines the following key practice areas
for software people: recruiting, selection, performance management, training, com-
pensation, career development, organization and work design, and team/culture
development. Organizations that achieve high levels of maturity in the people man-
agement area have a higher likelihood of implementing effective software engineer-
ing practices.

The PM-CMM is a companion to the software capability maturity model (Chap-
ter 2) that guides organizations in the creation of a mature software process. Issues

The People
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associated with people management and structure for software projects are consid-
ered later in this chapter.

3.1.2 The Product

Before a project can be planned, product! objectives and scope should be established,
alternative solutions should be considered, and technical and management con-
straints should be identified. Without this information, it is impossible to define rea-
sonable (and accurate) estimates of the cost, an effective assessment of risk, a realistic
breakdown of project tasks, or a manageable project schedule that provides a mean-
ingful indication of progress.

The software developer and customer must meet to define product objectives and
scope. In many cases, this activity begins as part of the system engineering or busi-
ness process engineering (Chapter 10) and continues as the first step in software
requirements analysis (Chapter 11). Objectives identify the overall goals for the prod-
uct (from the customer’s point of view) without considering how these goals will be
achieved. Scope identifies the primary data, functions and behaviors that character-
ize the product, and more important, attempts to bound these characteristics in a
quantitative manner.

Once the product objectives and scope are understood, alternative solutions are
considered. Although very little detail is discussed, the alternatives enable managers
and practitioners to select a "best" approach, given the constraints imposed by deliv-
ery deadlines, budgetary restrictions, personnel availability, technical interfaces, and
myriad other factors.

3.1.3 The Process

A software process (Chapter 2) provides the framework from which a comprehen-
sive plan for software development can be established. A small number of frame-
work activities are applicable to all software projects, regardless of their size or
complexity. A number of different task sets—tasks, milestones, work products, and
quality assurance points—enable the framework activities to be adapted to the char-
acteristics of the software project and the requirements of the project team. Finally,
umbrella activities—such as software quality assurance, software configuration man-
agement, and measurement—overlay the process model. Umbrella activities are inde-
pendent of any one framework activity and occur throughout the process.

3.1.4 The Project

We conduct planned and controlled software projects for one primary reason—it is
the only known way to manage complexity. And yet, we still struggle. In 1998, indus-
try data indicated that 26 percent of software projects failed outright and 46 percent
experienced cost and schedule overruns [REE99]. Although the success rate for

1 In this context, the term product is used to encompass any software that is to be built at the
request of others. It includes not only software products but also computer-based systems,
embedded software, and problem-solving software (e.g., programs for engineering/scientific prob-
lem solving).
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software projects has improved somewhat, our project failure rate remains higher
than it should be.2

In order to avoid project failure, a software project manager and the software engi-
neers who build the product must avoid a set of common warning signs, understand
the critical success factors that lead to good project management, and develop a com-
monsense approach for planning, monitoring and controlling the project. Each of
these issues is discussed in Section 3.5 and in the chapters that follow.

PEOPLE

In a study published by the IEEE [CURS88], the engineering vice presidents of three
major technology companies were asked the most important contributor to a suc-
cessful software project. They answered in the following way:

VP 1. Iguess if you had to pick one thing out that is most important in our environment,
I'd say it's not the tools that we use, it's the people.

VP 2: The most important ingredient that was successful on this project was having
smart people . . . very little else matters in my opinion. . . . The most important
thing you do for a project is selecting the staff . . . The success of the software
development organization is very, very much associcted with the ability to recruit
good people.

VP 3: The only rule I have in management is to ensure I have good people—real good
people—and that I grow good people—and that I provide an environment in
which good people can produce.

Indeed, this is a compelling testimonial on the importance of people in the software
engineering process. And yet, all of us, from senior engineering vice presidents to
the lowliest practitioner, often take people for granted. Managers argue (as the pre-
ceding group had) that people are primary, but their actions sometimes belie their
words. In this section we examine the players who participate in the software process
and the manner in which they are organized to perform effective software engi-
neering.

3.2.1 The Players

The software process (and every software project) is populated by players who can
be categorized into one of five constituencies:

1. Senior managers who define the business issues that often have significant
influence on the project.

2 Given these statistics, it's reasonable to ask how the impact of computers continues to grow
exponentially and the software industry continues to post double digit sales growth. Part of the
answer, I think, is that a substantial number of these “failed” projects are ill-conceived in the first
place. Customers lose interest quickly (because what they requested wasn't really as important as
they first thought), and the projects are cancelled.
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2. Project (technical) managers who must plan, motivate, organize, and
control the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer
a product or application.

4. Customers who specify the requirements for the software to be engineered
and other stakeholders who have a peripheral interest in the outcome.

5. End-users who interact with the software once it is released for production
use.

Every software project is populated by people who fall within this taxonomy. To be
effective, the project team must be organized in a way that maximizes each person’s
skills and abilities. And that’s the job of the team leader.

3.2.2 Team Leaders

Project management is a people-intensive activity, and for this reason, competent
practitioners often make poor team leaders. They simply don't have the right mix of
people skills. And yet, as Edgemon states: “Unfortunately and all too frequently it
seems, individuals just fall into a project manager role and become accidental proj-
ect managers.” [EDG95]

In an excellent book of technical leadership, Jerry Weinberg [WEI86] suggests a
MOI model of leadership:

Motivation. The ability to encourage (by “push or pull”) technical people to
produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones) that
will enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel cre-
ative even when they must work within bounds established for a particular soft-
ware product or application.

Weinberg suggests that successful project leaders apply a problem solving manage-
ment style. That is, a software project manager should concentrate on understand-
ing the problem to be solved, managing the flow of ideas, and at the same time, letting
everyone on the team know (by words and, far more important, by actions) that qual-
ity counts and that it will not be compromised.

Another view [EDG95] of the characteristics that define an effective project man-
ager emphasizes four key traits:

Problem solving. An effective software project manager can diagnose the
technical and organizational issues that are most relevant, systematically struc-
ture a solution or properly motivate other practitioners to develop the solu-
tion, apply lessons learned from past projects to new situations, and remain
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flexible enough to change direction if initial attempts at problem solution are
fruitless.

Managerial identity. A good project manager must take charge of the proj-
ect. She must have the confidence to assume control when necessary and the
assurance to allow good technical people to follow their instincts.

Achievement. To optimize the productivity of a project team, a manager must
reward initiative and accomplishment and demonstrate through his own actions
that controlled risk taking will not be punished.

Influence and team building. An effective project manager must be able to
“read” people; she must be able to understand verbal and nonverbal signals
and react to the needs of the people sending these signals. The manager must
remain under control in high-stress situations.

3.2.3 The Software Team

There are almost as many human organizational structures for software develop-
ment as there are organizations that develop software. For better or worse, organi-
zational structure cannot be easily modified. Concern with the practical and political
consequences of organizational change are not within the software project man-
ager's scope of responsibility. However, the organization of the people directly involved
in a new software project is within the project manager's purview.

The following options are available for applying human resources to a project that
will require n people working for k years:

1. nindividuals are assigned to m different functional tasks, relatively little
combined work occurs; coordination is the responsibility of a software man-
ager who may have six other projects to be concerned with.

2. nindividuals are assigned to m different functional tasks (m <n) so that
informal "teams" are established; an ad hoc team leader may be appointed;
coordination among teams is the responsibility of a software manager.

3. nindividuals are organized into ¢ teams; each team is assigned one or more
functional tasks; each team has a specific structure that is defined for all
teams working on a project; coordination is controlled by both the team and
a software project manager.

Although it is possible to voice arguments for and against each of these approaches,
a growing body of evidence indicates that a formal team organization (option 3) is
most productive.

The “best” team structure depends on the management style of your organi-
zation, the number of people who will populate the team and their skill levels,
and the overall problem difficulty. Mantei [MAN81] suggests three generic team
organizations:
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Democratic decentralized (DD). This software engineering team has no per-
manent leader. Rather, "task coordinators are appointed for short durations and
then replaced by others who may coordinate different tasks." Decisions on prob-
lems and approach are made by group consensus. Communication among team
members is horizontal.

Controlled decentralized (CD). This software engineering team has a defined
leader who coordinates specific tasks and secondary leaders that have respon-
sibility for subtasks. Problem solving remains a group activity, but implemen-
tation of solutions is partitioned among subgroups by the team leader.
Communication among subgroups and individuals is horizontal. Vertical com-
munication along the control hierarchy also occurs.

Controlled Centralized (CC). Top-level problem solving and internal team
coordination are managed by a team leader. Communication between the leader
and team members is vertical.

Mantei [MANS81] describes seven project factors that should be considered when plan-
ning the structure of software engineering teams:

¢ The difficulty of the problem to be solved.

¢ The size of the resultant program(s) in lines of code or function points
(Chapter 4).

¢ The time that the team will stay together (team lifetime).

e The degree to which the problem can be modularized.

e The required quality and reliability of the system to be built.
¢ The rigidity of the delivery date.

¢ The degree of sociability (communication) required for the project.

Because a centralized structure completes tasks faster, it is the most adept at han-
dling simple problems. Decentralized teams generate more and better solutions than
individuals. Therefore such teams have a greater probability of success when work-
ing on difficult problems. Since the CD team is centralized for problem solving, either
a CD or CC team structure can be successfully applied to simple problems. A DD struc-
ture is best for difficult problems.

Because the performance of a team is inversely proportional to the amount of com-
munication that must be conducted, very large projects are best addressed by teams
with a CC or CD structures when subgrouping can be easily accommodated.

The length of time that the team will "live together" affects team morale. It has
been found that DD team structures result in high morale and job satisfaction and
are therefore good for teams that will be together for a long time.

The DD team structure is best applied to problems with relatively low modularity,
because of the higher volume of communication needed. When high modularity is
possible (and people can do their own thing), the CC or CD structure will work well.
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CC and CD teams have been found to produce fewer defects than DD teams, but
these data have much to do with the specific quality assurance activities that are
applied by the team. Decentralized teams generally require more time to complete a
project than a centralized structure and at the same time are best when high socia-
bility is required.

Constantine [CON93] suggests four “organizational paradigms” for software engi-
neering teams:

1. A closed paradigm structures a team along a traditional hierarchy of author-
ity (similar to a CC team). Such teams can work well when producing soft-
ware that is quite similar to past efforts, but they will be less likely to be
innovative when working within the closed paradigm.

2. The random paradigm structures a team loosely and depends on individual
initiative of the team members. When innovation or technological break-
through is required, teams following the random paradigm will excel. But
such teams may struggle when “orderly performance” is required.

3. The open paradigm attempts to structure a team in a manner that achieves
some of the controls associated with the closed paradigm but also much of
the innovation that occurs when using the random paradigm. Work is per-
formed collaboratively, with heavy communication and consensus-based
decision making the trademarks of open paradigm teams. Open paradigm
team structures are well suited to the solution of complex problems but may
not perform as efficiently as other teams.

4. The synchronous paradigm relies on the natural compartmentalization of a
problem and organizes team members to work on pieces of the problem with
little active communication among themselves.

As an historical footnote, the earliest software team organization was a controlled
centralized (CD) structure originally called the chief programmer team. This structure
was first proposed by Harlan Mills and described by Baker [BAK72]. The nucleus of
the team was composed of a senior engineer (the chief programmer), who plans, coor-
dinates and reviews all technical activities of the team; technical staff (normally two
to five people), who conduct analysis and development activities; and a backup engi-
neer, who supports the senior engineer in his or her activities and can replace the
senior engineer with minimum loss in project continuity.

The chief programmer may be served by one or more specialists (e.g., telecom-
munications expert, database designer), support staff (e.g., technical writers, clerical
personnel), and a software librarian. The librarian serves many teams and performs
the following functions: maintains and controls all elements of the software config-
uration (i.e., documentation, source listings, data, storage media); helps collect and
format software productivity data; catalogs and indexes reusable software compo-
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nents; and assists the teams in research, evaluation, and document preparation. The
importance of a librarian cannot be overemphasized. The librarian acts as a con-
troller, coordinator, and potentially, an evaluator of the software configuration.

A variation on the democratic decentralized team has been proposed by Con-
stantine [CON93], who advocates teams with creative independence whose approach
to work might best be termed innovative anarchy. Although the free-spirited approach
to software work has appeal, channeling creative energy into a high-performance
team must be a central goal of a software engineering organization. To achieve a
high-performance team:

e Team members must have trust in one another.
e The distribution of skills must be appropriate to the problem.

e Mavericks may have to be excluded from the team, if team cohesiveness is to
be maintained.

Regardless of team organization, the objective for every project manager is to help
create a team that exhibits cohesiveness. In their book, Peopleware, DeMarco and
Lister [DEM98] discuss this issue:

We tend to use the word team fairly loosely in the business world, calling any group of peo-
ple assigned to work together a "team." But many of these groups just don't seem like teams.
They don't have a common definition of success or any identifiable team spirit. What is
missing is a phenomenon that we call jell.

Ajelled team is a group of people so strongly knit that the whole is greater than the sum
of the parts . . .

Once a team begins to jell, the probability of success goes way up. The team can become
unstoppable, a juggernaut for success . . . They don't need to be managed in the traditional
way, and they certainly don't need to be motivated. They've got momentum.

DeMarco and Lister contend that members of jelled teams are significantly more pro-
ductive and more motivated than average. They share a common goal, a common
culture, and in many cases, a "sense of eliteness" that makes them unique.

But not all teams jell. In fact, many teams suffer from what Jackman calls “team
toxicity” [JAC98]. She defines five factors that “foster a potentially toxic team envi-
ronment”:

1. A frenzied work atmosphere in which team members waste energy and lose
focus on the objectives of the work to be performed.

2. High frustration caused by personal, business, or technological factors that
causes friction among team members.

3. “Fragmented or poorly coordinated procedures” or a poorly defined or
improperly chosen process model that becomes a roadblock to accomplish-
ment.
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4. Unclear definition of roles resulting in a lack of accountability and resultant
finger-pointing.

5. “Continuous and repeated exposure to failure” that leads to a loss of confi-
dence and a lowering of morale.

Jackman suggests a number of antitoxins that address these all-too-common
problems.

To avoid a frenzied work environment, the project manager should be certain that
the team has access to all information required to do the job and that major goals
and objectives, once defined, should not be modified unless absolutely necessary. In
addition, bad news should not be kept secret but rather, delivered to the team as early
as possible (while there is still time to react in a rational and controlled manner).

Although frustration has many causes, software people often feel it when they lack
the authority to control their situation. A software team can avoid frustration if it is
given as much responsibility for decision making as possible. The more control over
process and technical decisions given to the team, the less frustration the team mem-
bers will feel.

An inappropriately chosen software process (e.g., unnecessary or burdensome
work tasks or poorly chosen work products) can be avoided in two ways: (1) being
certain that the characteristics of the software to be built conform to the rigor of the
process that is chosen and (2) allowing the team to select the process (with full recog-
nition that, once chosen, the team has the responsibility to deliver a high-quality
product).

The software project manager, working together with the team, should clearly
refine roles and responsibilities before the project begins. The team itself should estab-
lish its own mechanisms for accountability (formal technical reviews3 are an excel-
lent way to accomplish this) and define a series of corrective approaches when a
member of the team fails to perform.

Every software team experiences small failures. The key to avoiding an atmo-
sphere of failure is to establish team-based techniques for feedback and problem
solving. In addition, failure by any member of the team must be viewed as a failure
by the team itself. This leads to a team-oriented approach to corrective action, rather
than the finger-pointing and mistrust that grows rapidly on toxic teams.

In addition to the five toxins described by Jackman, a software team often strug-
gles with the differing human traits of its members. Some team members are extro-
verts, others are introverted. Some people gather information intuitively, distilling
broad concepts from disparate facts. Others process information linearly, collecting
and organizing minute details from the data provided. Some team members are com-
fortable making decisions only when a logical, orderly argument is presented. Oth-
ers are intuitive, willing to make a decision based on “feel.” Some practitioners want

3 Formal technical reviews are discussed in detail in Chapter 8.
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a detailed schedule populated by organized tasks that enable them to achieve clo-
sure for some element of a project. Others prefer a more spontaneous environment
in which open issues are okay. Some work hard to get things done long before a mile-
stone date, thereby avoiding stress as the date approaches, while others are ener-
gized by the rush to make a last minute deadline. A detailed discussion of the
psychology of these traits and the ways in which a skilled team leader can help peo-
ple with opposing traits to work together is beyond the scope of this book.4 However,
it is important to note that recognition of human differences is the first step toward
creating teams that jell.

3.2.4 Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many
development efforts is large, leading to complexity, confusion, and significant diffi-
culties in coordinating team members. Uncertainly is common, resulting in a contin-
uing stream of changes that ratchets the project team. Interoperability has become a
key characteristic of many systems. New software must communicate with existing
software and conform to predefined constraints imposed by the system or product.

These characteristics of modern software—scale, uncertainty, and interoperabil-
ity—are facts of life. To deal with them effectively, a software engineering team must
establish effective methods for coordinating the people who do the work. To accom-
plish this, mechanisms for formal and informal communication among team mem-
bers and between multiple teams must be established. Formal communication
is accomplished through “writing, structured meetings, and other relatively non-
interactive and impersonal communication channels” [KRA95]. Informal communi-
cation is more personal. Members of a software team share ideas on an ad hoc basis,
ask for help as problems arise, and interact with one another on a daily basis.

Kraul and Streeter [KRA95] examine a collection of project coordination techniques
that are categorized in the following manner:

Formal, impersonal approaches include software engineering documents
and deliverables (including source code), technical memos, project milestones,
schedules, and project control tools (Chapter 7), change requests and related
documentation (Chapter 9), error tracking reports, and repository data (see
Chapter 31).

Formal, interpersonal procedures focus on quality assurance activities
(Chapter 8) applied to software engineering work products. These include sta-
tus review meetings and design and code inspections.

Informal, interpersonal procedures include group meetings for informa-
tion dissemination and problem solving and “collocation of requirements and
development staff.”

4 An excellent introduction to these issues as they relate to software project teams can be found in
[FER98].
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Electronic communication encompasses electronic mail, electronic bulletin
boards, and by extension, video-based conferencing systems.

Interpersonal networking includes informal discussions with team members
and those outside the project who may have experience or insight that can assist
team members.

To assess the efficacy of these techniques for project coordination, Kraul and Streeter
studied 65 software projects involving hundreds of technical staff. Figure 3.1 (adapted
from [KRA95]) expresses the value and use of the coordination techniques just noted.
Referring to figure, the perceived value (rated on a seven point scale) of various coor-
dination and communication techniques is plotted against their frequency of use on
aproject. Techniques that fall above the regression line were “judged to be relatively
valuable, given the amount that they were used” [KRA95]. Techniques that fell below
the line were perceived to have less value. It is interesting to note that interpersonal
networking was rated the technique with highest coordination and communication
value. Itis also important to note that early software quality assurance mechanisms
(requirements and design reviews) were perceived to have more value than later
evaluations of source code (code inspections).
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THE PRODUCT

A software project manager is confronted with a dilemma at the very beginning of a
software engineering project. Quantitative estimates and an organized plan are
required, but solid information is unavailable. A detailed analysis of software require-
ments would provide necessary information for estimates, but analysis often takes
weeks or months to complete. Worse, requirements may be fluid, changing regularly
as the project proceeds. Yet, a plan is needed "now!"

Therefore, we must examine the product and the problem it is intended to solve
at the very beginning of the project. At a minimum, the scope of the product must be
established and bounded.

3.3.1 Software Scope

The first software project management activity is the determination of software scope.
Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or
business context and what constraints are imposed as a result of the context?
Information objectives. What customer-visible data objects (Chapter 11) are
produced as output from the software? What data objects are required for input?
Function and performance. What function does the software perform to
transform input data into output? Are any special performance characteristics
to be addressed?

Software project scope must be unambiguous and understandable at the manage-
ment and technical levels. A statement of software scope must be bounded. That
is, quantitative data (e.g., number of simultaneous users, size of mailing list, maxi-
mum allowable response time) are stated explicitly; constraints and/or limitations
(e.g., product cost restricts memory size) are noted, and mitigating factors (e.g., desired
algorithms are well understood and available in C++) are described.

3.3.2 Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an
activity that sits at the core of software requirements analysis (Chapter 11). During
the scoping activity no attempt is made to fully decompose the problem. Rather,
decomposition is applied in two major areas: (1) the functionality that must be deliv-
ered and (2) the process that will be used to deliver it.

Human beings tend to apply a divide and conquer strategy when they are con-
fronted with a complex problems. Stated simply, a complex problem is partitioned
into smaller problems that are more manageable. This is the strategy that applies as
project planning begins. Software functions, described in the statement of scope, are
evaluated and refined to provide more detail prior to the beginning of estimation
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(Chapter 5). Because both cost and schedule estimates are functionally oriented, some
degree of decomposition is often useful.

As an example, consider a project that will build a new word-processing product.
Among the unique features of the product are continuous voice as well as keyboard
input, extremely sophisticated “automatic copy edit” features, page layout capability,
automatic indexing and table of contents, and others. The project manager must first
establish a statement of scope that bounds these features (as well as other more mun-
dane functions such as editing, file management, document production, and the like).
For example, will continuous voice input require that the product be “trained” by the
user? Specifically, what capabilities will the copy edit feature provide? Just how sophis-
ticated will the page layout capability be?

As the statement of scope evolves, a first level of partitioning naturally occurs. The
project team learns that the marketing department has talked with potential cus-
tomers and found that the following functions should be part of automatic copy edit-
ing: (1) spell checking, (2) sentence grammar checking, (3) reference checking for
large documents (e.g., Is a reference to a bibliography entry found in the list of entries
in the bibliography?), and (4) section and chapter reference validation for large doc-
uments. Each of these features represents a subfunction to be implemented in soft-
ware. Each can be further refined if the decomposition will make planning easier.

THE PROCESS

The generic phases that characterize the software process—definition, development,
and support—are applicable to all software. The problem is to select the process
model that is appropriate for the software to be engineered by a project team. In Chap-
ter 2, a wide array of software engineering paradigms were discussed:

e the linear sequential model

e the prototyping model

e the RAD model

e the incremental model

e the spiral model

e the WINWIN spiral model

e the component-based development model

e the concurrent development model

e the formal methods model

¢ the fourth generation techniques model

The project manager must decide which process model is most appropriate for (1)
the customers who have requested the product and the people who will do the work,
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(2) the characteristics of the product itself, and (3) the project environment in which
the software team works. When a process model has been selected, the team then
defines a preliminary project plan based on the set of common process framework
activities. Once the preliminary plan is established, process decomposition begins.
That is, a complete plan, reflecting the work tasks required to populate the frame-
work activities must be created. We explore these activities briefly in the sections that
follow and present a more detailed view in Chapter 7.

3.4.1 Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each func-
tion to be engineered by the software team must pass through the set of framework
activities that have been defined for a software organization. Assume that the organ-
ization has adopted the following set of framework activities (Chapter 2):

e Customer communication—tasks required to establish effective requirements
elicitation between developer and customer.

e Planning—tasks required to define resources, timelines, and other project-
related information.

e Risk analysis—tasks required to assess both technical and management risks.

e Engineering—tasks required to build one or more representations of the
application.

e Construction and release—tasks required to construct, test, install, and pro-
vide user support (e.g., documentation and training).

e Customer evaluation—tasks required to obtain customer feedback based on
evaluation of the software representations created during the engineering
activity and implemented during the construction activity.

The team members who work on a product function will apply each of the frame-
work activities to it. In essence, a matrix similar to the one shown in Figure 3.2 is
created. Each major product function (the figure notes functions for the word-pro-
cessing software discussed earlier) is listed in the left-hand column. Framework
activities are listed in the top row. Software engineering work tasks (for each frame-
work activity) would be entered in the following row.5 The job of the project man-
ager (and other team members) is to estimate resource requirements for each matrix
cell, start and end dates for the tasks associated with each cell, and work products
to be produced as a consequence of each task. These activities are considered in
Chapters 5 and 7.

5 It should be noted that work tasks must be adapted to the specific needs of a project. Framework
activities always remain the same, but work tasks will be selected based on a number of adapta-
tion criteria. This topic is discussed further in Chapter 7 and at the SEPA Web site.
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3.4.2 Process Decomposition

A software team should have a significant degree of flexibility in choosing the soft-
ware engineering paradigm that is best for the project and the software engineering
tasks that populate the process model once it is chosen. A relatively small project
that is similar to past efforts might be best accomplished using the linear sequential
approach. If very tight time constraints are imposed and the problem can be heavily
compartmentalized, the RAD model is probably the right option. If the deadline is so
tight that full functionality cannot reasonably be delivered, an incremental strategy
might be best. Similarly, projects with other characteristics (e.g., uncertain require-
ments, breakthrough technology, difficult customers, significant reuse potential) will
lead to the selection of other process models.6

Once the process model has been chosen, the common process framework (CPF)
is adapted to it. In every case, the CPF discussed earlier in this chapter—customer
communication, planning, risk analysis, engineering, construction and release, cus-
tomer evaluation—can be fitted to the paradigm. It will work for linear models, for
iterative and incremental models, for evolutionary models, and even for concurrent
or component assembly models. The CPF is invariant and serves as the basis for all
software work performed by a software organization.

But actual work tasks do vary. Process decomposition commences when the proj-
ect manager asks, “How do we accomplish this CPF activity?” For example, a small,

6 Recall that project characteristics also have a strong bearing on the structure of the team that is
to do the work. See Section 3.2.3.
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relatively simple project might require the following work tasks for the customer com-
munication activity:

Develop list of clarification issues.

Meet with customer to address clarification issues.

Jointly develop a statement of scope.

L

Review the statement of scope with all concerned.

5. Modify the statement of scope as required.
These events might occur over a period of less than 48 hours. They represent a process
decomposition that is appropriate for the small, relatively simple project.

Now, we consider a more complex project, which has a broader scope and more
significant business impact. Such a project might require the following work tasks for
the customer communication activity:

Review the customer request.
Plan and schedule a formal, facilitated meeting with the customer.
. Conduct research to specify the proposed solution and existing approaches.

1.
2.
3
4. Prepare a “working document” and an agenda for the formal meeting.
5. Conduct the meeting.

6

. Jointly develop mini-specs that reflect data, function, and behavioral features
of the software.

7. Review each mini-spec for correctness, consistency, and lack of ambiguity.
8. Assemble the mini-specs into a scoping document.
9. Review the scoping document with all concerned.
10. Modify the scoping document as required.
Both projects perform the framework activity that we call “customer communica-

tion,” but the first project team performed half as many software engineering work
tasks as the second.

THE PROJECT

In order to manage a successful software project, we must understand what can go
wrong (so that problems can be avoided) and how to do it right. In an excellent paper
on software projects, John Reel [REE99] defines ten signs that indicate that an infor-
mation systems project is in jeopardy:

1. Software people don't understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.
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10. Managers [and practitioners] avoid best practices and lessons learned.

Jaded industry professionals often refer to the 90-90 rule when discussing partic-
ularly difficult software projects: The first 90 percent of a system absorbs 90 percent
of the allotted effort and time. The last 10 percent takes the other 90 percent of the
allotted effort and time [ZAH94]. The seeds that lead to the 90-90 rule are contained
in the signs noted in the preceeding list.

But enough negativity! How does a manager act to avoid the problems just noted?
Reel [REE99] suggests a five-part commonsense approach to software projects:

1. Start on the right foot. This is accomplished by working hard (very hard)
to understand the problem that is to be solved and then setting realistic
objects and expectations for everyone who will be involved in the project. It
is reinforced by building the right team (Section 3.2.3) and giving the team
the autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then
slowly disintegrate. To maintain momentum, the project manager must pro-
vide incentives to keep turnover of personnel to an absolute minimum, the
team should emphasize quality in every task it performs, and senior manage-
ment should do everything possible to stay out of the team'’s way.”

3. Track progress. For a software project, progress is tracked as work prod-
ucts (e.g., specifications, source code, sets of test cases) are produced and
approved (using formal technical reviews) as part of a quality assurance
activity. In addition, software process and project measures (Chapter 4) can
be collected and used to assess progress against averages developed for the
software development organization.

4. Make smart decisions. In essence, the decisions of the project manager
and the software team should be to “keep it simple.” Whenever possible,
decide to use commercial off-the-shelf software or existing software compo-
nents, decide to avoid custom interfaces when standard approaches are

7 The implication of this statement is that bureacracy is reduced to a minimum, extraneous meet-

ings are eliminated, and dogmatic adherence to process and project rules is eliminated. The team
should be allowed to do its thing.
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available, decide to identify and then avoid obvious risks, and decide to allo-
cate more time than you think is needed to complex or risky tasks (you'll
need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for
extracting lessons learned for each project. Evaluate the planned and actual
schedules, collect and analyze software project metrics, get feedback from
team members and customers, and record findings in written form.

THE WS5HH PRINCIPLE

In an excellent paper on software process and projects, Barry Boehm [BOE96] states:
“you need an organizing principle that scales down to provide simple [project] plans for
simple projects.” Boehm suggests an approach that addresses project objectives, mile-
stones and schedules, responsibilities, management and technical approaches, and
required resources. He calls it the WWWWWHH principle, after a series of questions that
lead to a definition of key project characteristics and the resultant project plan:

Why is the system being developed? The answer to this question enables
all parties to assess the validity of business reasons for the software work. Stated
in another way, does the business purpose justify the expenditure of people, time,
and money?

What will be done, by when? The answers to these questions help the team
to establish a project schedule by identifying key project tasks and the milestones
that are required by the customer.

Who is responsible for a function? Earlier in this chapter, we noted that the
role and responsibility of each member of the software team must be defined.
The answer to this question helps accomplish this.

Where are they organizationally located? Not all roles and responsibilities
reside within the software team itself. The customer, users, and other stake-
holders also have responsibilities.

How will the job be done technically and managerially? Once product
scope is established, a management and technical strategy for the project must
be defined.

How much of each resource is needed? The answer to this question is derived
by developing estimates (Chapter 5) based on answers to earlier questions.

Boehm'’s W5HH principle is applicable regardless of the size or complexity of a soft-
ware project. The questions noted provide an excellent planning outline for the proj-
ect manager and the software team.
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CRITICAL PRACTICES

The Airlie Council® has developed a list of “critical software practices for perform-
ance-based management.” These practices are “consistently used by, and considered
critical by, highly successful software projects and organizations whose ‘bottom line’
performance is consistently much better than industry averages” [AIR99]. In an effort
to enable a software organization to determine whether a specific project has imple-
mented critical practices, the Airlie Council has developed a set of “QuickLook” ques-
tions [AIR99] for a project:?

Formal risk management. What are the top ten risks for this project? For
each of the risks, what is the chance that the risk will become a problem and
what is the impact if it does?

Empirical cost and schedule estimation. What is the current estimated size
of the application software (excluding system software) that will be delivered
into operation? How was it derived?

Metric-based project management. Do you have in place a metrics pro-
gram to give an early indication of evolving problems? If so, what is the cur-
rent requirements volatility?

Earned value tracking. Do you report monthly earned value metrics? If so,
are these metrics computed from an activity network of tasks for the entire
effort to the next delivery?

Defect tracking against quality targets. Do you track and periodically report
the number of defects found by each inspection (formal technical review) and
execution test from program inception and the number of defects currently
closed and open?

People-aware program management. What is the average staff turnover
for the past three months for each of the suppliers/developers involved in the
development of software for this system?

If a software project team cannot answer these questions or answers them inade-
quately, a thorough review of project practices is indicated. Each of the critical prac-
tices just noted is addressed in detail throughout Part Two of this book.

SUMMARY

Software project management is an umbrella activity within software engineering. It
begins before any technical activity is initiated and continues throughout the defini-
tion, development, and support of computer software.

8 The Airlie Council is a team of software engineering experts chartered by the U.S. Department of
Defense to help develop guidelines for best practices in software project management and soft-
ware engineering.

9 Only those critical practices associated with “project integrity” are noted here. Other best prac-
tices will be discussed in later chapters.
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Four P’s have a substantial influence on software project management—people,
product, process, and project. People must be organized into effective teams, moti-
vated to do high-quality software work, and coordinated to achieve effective com-
munication. The product requirements must be communicated from customer to
developer, partitioned (decomposed) into their constituent parts, and positioned for
work by the software team. The process must be adapted to the people and the prob-
lem. A common process framework is selected, an appropriate software engineer-
ing paradigm is applied, and a set of work tasks is chosen to get the job done. Finally,
the project must be organized in a manner that enables the software team to suc-
ceed.

The pivotal element in all software projects is people. Software engineers can be
organized in a number of different team structures that range from traditional con-
trol hierarchies to “open paradigm” teams. A variety of coordination and communi-
cation techniques can be applied to support the work of the team. In general, formal
reviews and informal person-to-person communication have the most value for prac-
titioners.

The project management activity encompasses measurement and metrics, esti-
mation, risk analysis, schedules, tracking, and control. Each of these topics is con-
sidered in the chapters that follow.
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PROBLEMS AND POINTS TO PONDER

3.1. Based on information contained in this chapter and your own experience, develop
“ten commandments” for empowering software engineers. That is, make a list of ten
guidelines that will lead to software people who work to their full potential.

3.2. The Software Engineering Institute’s people management capability maturity
model (PM-CMM) takes an organized look at “key practice areas” that cultivate good
software people. Your instructor will assign you one KPA for analysis and summary.

3.3. Describe three real-life situations in which the customer and the end-user are
the same. Describe three situations in which they are different.

3.4. The decisions made by senior management can have a significant impact on
the effectiveness of a software engineering team. Provide five examples to illustrate
that this is true.

3.5. Review a copy of Weinberg's book [WEI86] and write a two- or three-page sum-
mary of the issues that should be considered in applying the MOI model.

3.6. You have been appointed a project manager within an information systems
organization. Your job is to build an application that is quite similar to others your
team has built, although this one is larger and more complex. Requirements have
been thoroughly documented by the customer. What team structure would you choose
and why? What software process model(s) would you choose and why?

3.7. You have been appointed a project manager for a small software products com-
pany. Your job is to build a breakthrough product that combines virtual reality hard-
ware with state-of-the-art software. Because competition for the home entertainment
market is intense, there is significant pressure to get the job done. What team struc-
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ture would you choose and why? What software process model(s) would you choose
and why?

3.8. You have been appointed a project manager for a major software products com-
pany. Your job is to manage the development of the next generation version of its
widely used word-processing software. Because competition is intense, tight dead-
lines have been established and announced. What team structure would you choose
and why? What software process model(s) would you choose and why?

3.9. You have been appointed a software project manager for a company that ser-
vices the genetic engineering world. Your job is to manage the development of a new
software product that will accelerate the pace of gene typing. The work is R&D ori-
ented, but the goal to to produce a product within the next year. What team struc-
ture would you choose and why? What software process model(s) would you choose
and why?

3.10. Referring to Figure 3.1, based on the results of the referenced study, docu-
ments are perceived to have more use than value. Why do you think this occurred
and what can be done to move the documents data point above the regression line
in the graph? That is, what can be done to improve the perceived value of documents?

3.11. You have been asked to develop a small application that analyzes each course
offered by a university and reports the average grade obtained in the course (for a
given term). Write a statement of scope that bounds this problem.

3.12. Do afirst level functional decomposition of the page layout function discussed
briefly in Section 3.3.2.

FURTHER READINGS AND INFORMATION SOURCES

An excellent four volume series written by Weinberg (Quality Software Management,
Dorset House, 1992, 1993, 1994, 1996) introduces basic systems thinking and man-
agement concepts, explains how to use measurements effectively, and addresses
“congruent action,” the ability to establish “fit” between the manager’s needs, the
needs of technical staff, and the needs of the business. It will provide both new and
experienced managers with useful information. Brooks (The Mythical Man-Month,
Anniversary Edition, Addison-Wesley, 1995) has updated his classic book to provide
new insight into software project and management issues. Purba and Shah (How to
Manage a Successful Software Project, Wiley, 1995) present a number of case studies
that indicate why some projects succeed and others fail. Bennatan (Software Project
Management in a Client/Server Environment, Wiley, 1995) discusses special manage-
ment issues associated with the development of client/server systems.

It can be argued that the most important aspect of software project management
is people management. The definitive book on this subject has been written by
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DeMarco and Lister [DEM98], but the following books on this subject have been pub-
lished in recent years and are worth examining:
Beaudouin-Lafon, M., Computer Supported Cooperative Work, Wiley-Liss, 1999.
Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall,
1999.
Humphrey, W.S., Managing Technical People: Innovation, Teamwork, and the Software Process,
Addison-Wesley, 1997.
Humphrey, W.S., Introduction to the Team Software Process, Addison-Wesley, 1999.
Jones, P.H., Handbook of Team Design: A Practitioner's Guide to Team Systems Development,
McGraw-Hill, 1997.
Karolak, D.S., Global Software Development: Managing Virtual Teams and Environments, 1EEE
Computer Society, 1998.

Mayer, M., The Virtual Edge: Embracing Technology for Distributed Project Team Success,
Project Management Institute Publications, 1999.

Another excellent book by Weinberg [WEI86] is must reading for every project
manager and every team leader. It will give you insight and guidance in ways to do
your job more effectively. House (The Human Side of Project Management, Addison-
Wesley, 1988) and Crosby (Running Things: The Art of Making Things Happen, McGraw-
Hill, 1989) provide practical advice for managers who must deal with human as well
as technical problems.

Even though they do not relate specifically to the software world and sometimes
suffer from over-simplification and broad generalization, best-selling “management”
books by Drucker (Management Challenges for the 21st Century, Harper Business, 1999),
Buckingham and Coffman (First, Break All the Rules: What the World's Greatest Man-
agers Do Differently, Simon and Schuster, 1999) and Christensen (The Innovator's
Dilemma, Harvard Business School Press, 1997) emphasize “new rules” defined by a
rapidly changing economy, Older titles such as The One-Minute Manager and In Search
of Excellence continue to provide valuable insights that can help you to manage peo-
ple issues more effectively.

A wide variety of information sources on software project issues are available on
the Internet. An up-to-date list of World Wide Web references that are relevant to the
software projects can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/
project-mgmt.mhtml
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The software engineering community has finally begun to take Lord Kelvin's

words to heart. But not without frustration and more than a little controversy!

Software metrics refers to a broad range of measurements for computer soft-
ware. Measurement can be applied to the software process with the intent of
improving it on a continuous basis. Measurement can be used throughout a
software project to assist in estimation, quality control, productivity assess-
ment, and project control. Finally, measurement can be used by software engi-
neers to help assess the quality of technical work products and to assist in
tactical decision making as a project proceeds.
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QUICK What is the work product? A set How do I ensure that I've done it right? By apply-
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understanding of the project. ish individual performance.

Technical metrics for
software engineering
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Chapters 19 and 24.
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4,1

Within the context of software project management, we are concerned primarily
with productivity and quality metrics—measures of software development "output"
as a function of effort and time applied and measures of the "fitness for use" of the
work products that are produced. For planning and estimating purposes, our inter-
est is historical. What was software development productivity on past projects? What
was the quality of the software that was produced? How can past productivity and
quality data be extrapolated to the present? How can it help us plan and estimate
more accurately?

In their guidebook on software measurement, Park, Goethert, and Florac [PAR96]
discuss the reasons that we measure:

There are four reasons for measuring software processes, products, and resources: to char-
acterize, to evaluate, to predict, or to improve.

We characterize to gain understanding of processes, products, resources, and environ-
ments, and to establish baselines for comparisons with future assessments.

We evaluate to determine status with respect to plans. Measures are the sensors that
let us know when our projects and processes are drifting off track, so that we can bring
them back under control. We also evaluate to assess achievement of quality goals and to
assess the impacts of technology and process improvements on products and processes.

We predict so that we can plan. Measuring for prediction involves gaining understand-
ings of relationships among processes and products and building models of these rela-
tionships, so that the values we observe for some attributes can be used to predict others.
We do this because we want to establish achievable goals for cost, schedule, and quality—
so that appropriate resources can be applied. Predictive measures are also the basis for
extrapolating trends, so estimates for cost, time, and quality can be updated based on cur-
rent evidence. Projections and estimates based on historical data also help us analyze risks
and make design/cost trade-offs.

We measure to improve when we gather quantitative information to help us identify
roadblocks, root causes, inefficiencies, and other opportunities for improving product qual-
ity and process performance.

MEASURES, METRICS, AND INDICATORS

Although the terms measure, measurement, and metrics are often used interchange-
ably, it is important to note the subtle differences between them. Because measure
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can be used either as a noun or a verb, definitions of the term can become confus-
ing. Within the software engineering context, a measure provides a quantitative indi-
cation of the extent, amount, dimension, capacity, or size of some attribute of a product
or process. Measurement is the act of determining a measure. The IEEE Standard
Glossary of Software Engineering Terms [IEE93] defines metric as “a quantitative mea-
sure of the degree to which a system, component, or process possesses a given
attribute.”

When a single data point has been collected (e.g., the number of errors uncovered
in the review of a single module), a measure has been established. Measurement
occurs as the result of the collection of one or more data points (e.g., a number of
module reviews are investigated to collect measures of the number of errors for each).
A software metric relates the individual measures in some way (e.g., the average
number of errors found per review or the average number of errors found per per-
son-hour expended on reviews.!

A software engineer collects measures and develops metrics so that indicators
will be obtained. An indicator is a metric or combination of metrics that provide insight
into the software process, a software project, or the product itself [RAG95]. An indi-
cator provides insight that enables the project manager or software engineers to
adjust the process, the project, or the process to make things better.

For example, four software teams are working on a large software project. Each
team must conduct design reviews but is allowed to select the type of review that it
will use. Upon examination of the metric, errors found per person-hour expended,
the project manager notices that the two teams using more formal review methods
exhibit an errors found per person-hour expended that is 40 percent higher than the
other teams. Assuming all other parameters equal, this provides the project manager
with an indicator that formal review methods may provide a higher return on time
investment than another, less formal review approach. She may decide to suggest
that all teams use the more formal approach. The metric provides the manager with
insight. And insight leads to informed decision making.

METRICS IN THE PROCESS AND PROJECT DOMAINS

Measurement is commonplace in the engineering world. We measure power con-
sumption, weight, physical dimensions, temperature, voltage, signal-to-noise ratio . . .
the list is almost endless. Unfortunately, measurement is far less common in the soft-
ware engineering world. We have trouble agreeing on what to measure and trouble
evaluating measures that are collected.

1 This assumes that another measure, person-hours expended, is collected for each review.
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Metrics should be collected so that process and product indicators can be ascer-
tained. Process indicators enable a software engineering organization to gain insight
into the efficacy of an existing process (i.e., the paradigm, software engineering tasks,
work products, and milestones). They enable managers and practitioners to assess
what works and what doesn'’t. Process metrics are collected across all projects and
over long periods of time. Their intent is to provide indicators that lead to long-term
software process improvement.

Project indicators enable a software project manager to (1) assess the status of an
ongoing project, (2) track potential risks, (3) uncover problem areas before they go
“critical,” (4) adjust work flow or tasks, and (5) evaluate the project team's ability to
control quality of software work products.

In some cases, the same software metrics can be used to determine project and
then process indicators. In fact, measures that are collected by a project team and
converted into metrics for use during a project can also be transmitted to those with
responsibility for software process improvement. For this reason, many of the same
metrics are used in both the process and project domain.

4.2.1 Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the
process, develop a set of meaningful metrics based on these attributes, and then use
the metrics to provide indicators that will lead to a strategy for improvement. But
before we discuss software metrics and their impact on software process improve-
ment, it is important to note that process is only one of a number of “controllable fac-
tors in improving software quality and organizational performance [PAU9%4].”

Referring to Figure 4.1, process sits at the center of a triangle connecting three
factors that have a profound influence on software quality and organizational per-
formance. The skill and motivation of people has been shown [BOE81] to be the sin-
gle most influential factor in quality and performance. The complexity of the product
can have a substantial impact on quality and team performance. The technology (i.e.,
the software engineering methods) that populate the process also has an impact.
In addition, the process triangle exists within a circle of environmental conditions
that include the development environment (e.g., CASE tools), business condi-
tions (e.g., deadlines, business rules), and customer characteristics (e.g., ease of
communication).

We measure the efficacy of a software process indirectly. That is, we derive a set
of metrics based on the outcomes that can be derived from the process. Outcomes
include measures of errors uncovered before release of the software, defects deliv-
ered to and reported by end-users, work products delivered (productivity), human
effort expended, calendar time expended, schedule conformance, and other mea-
sures. We also derive process metrics by measuring the characteristics of specific
software engineering tasks. For example, we might measure the effort and time spent
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performing the umbrella activities and the generic software engineering activities
described in Chapter 2.

Grady [GRA92] argues that there are “private and public” uses for different types
of process data. Because it is natural that individual software engineers might be sen-
sitive to the use of metrics collected on an individual basis, these data should be pri-
vate to the individual and serve as an indicator for the individual only. Examples of
private metrics include defect rates (by individual), defect rates (by module), and errors
found during development.

The “private process data” philosophy conforms well with the personal software
process approach proposed by Humphrey [HUM95]. Humphrey describes the approach
in the following manner:

The personal software process (PSP) is a structured set of process descriptions, measure-
ments, and methods that can help engineers to improve their personal performance. It pro-
vides the forms, scripts, and standards that help them estimate and plan their work. It shows
them how to define processes and how to measure their quality and productivity. A funda-
mental PSP principle is that everyone is different and that a method that is effective for one
engineer may not be suitable for another. The PSP thus helps engineers to measure and
track their own work so they can find the methods that are best for them.

Humphrey recognizes that software process improvement can and should begin at
the individual level. Private process data can serve as an important driver as the indi-
vidual software engineer works to improve.

Some process metrics are private to the software project team but public to all
team members. Examples include defects reported for major software functions (that
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have been developed by a number of practitioners), errors found during formal tech-
nical reviews, and lines of code or function points per module and function.2 These
data are reviewed by the team to uncover indicators that can improve team perfor-
mance.

Public metrics generally assimilate information that originally was private to indi-
viduals and teams. Project level defect rates (absolutely not attributed to an individ-
ual), effort, calendar times, and related data are collected and evaluated in an attempt
to uncover indicators that can improve organizational process performance.

Software process metrics can provide significant benefit as an organization works
to improve its overall level of process maturity. However, like all metrics, these can
be misused, creating more problems than they solve. Grady [GRA92] suggests a “soft-
ware metrics etiquette” that is appropriate for both managers and practitioners as
they institute a process metrics program:

e Use common sense and organizational sensitivity when interpreting metrics
data.

e Provide regular feedback to the individuals and teams who collect measures
and metrics.

e Don't use metrics to appraise individuals.

e Work with practitioners and teams to set clear goals and metrics that will be
used to achieve them.

e Never use metrics to threaten individuals or teams.

e Metrics data that indicate a problem area should not be considered “nega-
tive.” These data are merely an indicator for process improvement.

e Don't obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of
process metrics, the derivation of simple indicators gives way to a more rigorous
approach called statistical software process improvement (SSPI). In essence, SSPI uses
software failure analysis to collect information about all errors and defects3 encoun-
tered as an application, system, or product is developed and used. Failure analysis
works in the following manner:

1. All errors and defects are categorized by origin (e.g., flaw in specification,
flaw in logic, nonconformance to standards).

2. The cost to correct each error and defect is recorded.

2 See Sections 4.3.1 and 4.3.2 for detailed discussions of LOC and function point metrics.

3 Aswe discuss in Chapter 8, an error is some flaw in a software engineering work product or deliv-
erable that is uncovered by software engineers before the software is delivered to the end-user. A
defect is a flaw that is uncovered after delivery to the end-user.
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o —— Following steps 1 and 2, a simple defect distribution can be developed (Figure 4.2)

[GRA94]. For the pie-chart noted in the figure, eight causes of defects and their ori-
gin (indicated by shading) are shown. Grady suggests the development of a fishbone
diagram [GRA92] to help in diagnosing the data represented in the frequency dia-
gram. Referring to Figure 4.3, the spine of the diagram (the central line) represents
the quality factor under consideration (in this case specification defects that account
for 25 percent of the total). Each of the ribs (diagonal lines) connecting to the spine
indicate potential causes for the quality problem (e.g., missing requirements, ambigu-
ous specification, incorrect requirements, changed requirements). The spine and ribs
notation is then added to each of the major ribs of the diagram to expand upon the
cause noted. Expansion is shown only for the incorrect cause in Figure 4.3.
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The collection of process metrics is the driver for the creation of the fishbone dia-
gram. A completed fishbone diagram can be analyzed to derive indicators that will
enable a software organization to modify its process to reduce the frequency of errors
and defects.

4.2.2 Project Metrics

Software process metrics are used for strategic purposes. Software project measures
are tactical. That is, project metrics and the indicators derived from them are used
by a project manager and a software team to adapt project work flow and technical
activities.

The first application of project metrics on most software projects occurs during
estimation. Metrics collected from past projects are used as a basis from which effort
and time estimates are made for current software work. As a project proceeds, mea-
sures of effort and calendar time expended are compared to original estimates (and
the project schedule). The project manager uses these data to monitor and control
progress.

As technical work commences, other project metrics begin to have significance.
Production rates represented in terms of pages of documentation, review hours, func-
tion points, and delivered source lines are measured. In addition, errors uncovered
during each software engineering task are tracked. As the software evolves from
specification into design, technical metrics (Chapters 19 and 24) are collected to assess
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design quality and to provide indicators that will influence the approach taken to code
generation and testing.

The intent of project metrics is twofold. First, these metrics are used to minimize
the development schedule by making the adjustments necessary to avoid delays and
mitigate potential problems and risks. Second, project metrics are used to assess
product quality on an ongoing basis and, when necessary, modify the technical
approach to improve quality.

As quality improves, defects are minimized, and as the defect count goes down,
the amount of rework required during the project is also reduced. This leads to a
reduction in overall project cost.

Another model of software project metrics [HET93] suggests that every project
should measure:

e Inputs—measures of the resources (e.g., people, environment) required to do
the work.

e Oulputs—measures of the deliverables or work products created during the
software engineering process.

e Results—measures that indicate the effectiveness of the deliverables.

In actuality, this model can be applied to both process and project. In the project con-
text, the model can be applied recursively as each framework activity occurs. There-
fore the output from one activity becomes input to the next. Results metrics can be
used to provide an indication of the usefulness of work products as they flow from
one framework activity (or task) to the next.

SOFTWARE MEASUREMENT

Measurements in the physical world can be categorized in two ways: direct measures
(e.g., the length of a bolt) and indirect measures (e.g., the "quality" of bolts produced,
measured by counting rejects). Software metrics can be categorized similarly.

Direct measures of the software engineering process include cost and effort applied.
Direct measures of the product include lines of code (LOC) produced, execution speed,
memory size, and defects reported over some set period of time. Indirect measures of
the product include functionality, quality, complexity, efficiency, reliability, maintain-
ability, and many other "-abilities" that are discussed in Chapter 19.

The cost and effort required to build software, the number of lines of code pro-
duced, and other direct measures are relatively easy to collect, as long as specific
conventions for measurement are established in advance. However, the quality and
functionality of software or its efficiency or maintainability are more difficult to assess
and can be measured only indirectly.

We have already partitioned the software metrics domain into process, project,
and product metrics. We have also noted that product metrics that are private to an



88

ﬁpwcsg

Because many factors
influence software
work, don’t use
metrics to compare
individuals or teams.

2 What data
®  should we
collect to derive
size-oriented
metrics?

FIGURE 4.4

Size-oriented
metrics

PART TWO MANAGING SOFTWARE PROJECTS

individual are often combined to develop project metrics that are public to a software
team. Project metrics are then consolidated to create process metrics that are public
to the software organization as a whole. But how does an organization combine met-
rics that come from different individuals or projects?

To illustrate, we consider a simple example. Individuals on two different project
teams record and categorize all errors that they find during the software process. Indi-
vidual measures are then combined to develop team measures. Team A found 342
errors during the software process prior to release. Team B found 184 errors. All other
things being equal, which team is more effective in uncovering errors throughout the
process? Because we do not know the size or complexity of the projects, we cannot
answer this question. However, if the measures are normalized, it is possible to cre-
ate software metrics that enable comparison to broader organizational averages.

4.3.1 Size-Oriented Metrics

Size-oriented software metrics are derived by normalizing quality and/or productiv-
ity measures by considering the size of the software that has been produced. If a soft-
ware organization maintains simple records, a table of size-oriented measures, such
as the one shown in Figure 4.4, can be created. The table lists each software devel-
opment project that has been completed over the past few years and corresponding
measures for that project. Referring to the table entry (Figure 4.4) for project alpha:
12,100 lines of code were developed with 24 person-months of effort at a cost of
$168,000. It should be noted that the effort and cost recorded in the table represent
all software engineering activities (analysis, design, code, and test), not just coding.
Further information for project alpha indicates that 365 pages of documentation were
developed, 134 errors were recorded before the software was released, and 29 defects

Project LOC Effort |$(000) [ Pp. doc. | Errors | Defects | People

alpha 12,100 24 168 365 134 29 3
beta 27,200 62 440 1224 321 86 5
gamma 20,200 43 314 1050 256 64 6
L[] L] L[] L] [ ] L]
L] L] L[] [ ] [ ] L]
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were encountered after release to the customer within the first year of operation.
Three people worked on the development of software for project alpha.

In order to develop metrics that can be assimilated with similar metrics from other
projects, we choose lines of code as our normalization value. From the rudimentary
data contained in the table, a set of simple size-oriented metrics can be developed
for each project:

e Errors per KLOC (thousand lines of code).
e Defects? per KLOC.
e $per LOC.

e Page of documentation per KLOC.
In addition, other interesting metrics can be computed:

e Errors per person-month.
e LOC per person-month.

e §$ per page of documentation.

Size-oriented metrics are not universally accepted as the best way to measure the
process of software development [JON86]. Most of the controversy swirls around the
use of lines of code as a key measure. Proponents of the LOC measure claim that LOC
is an "artifact" of all software development projects that can be easily counted, that
many existing software estimation models use LOC or KLOC as a key input, and that
a large body of literature and data predicated on LOC already exists. On the other
hand, opponents argue that LOC measures are programming language dependent,
that they penalize well-designed but shorter programs, that they cannot easily accom-
modate nonprocedural languages, and that their use in estimation requires a level of
detail that may be difficult to achieve (i.e., the planner must estimate the LOC to be
produced long before analysis and design have been completed).

4.3.2 Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by
the application as a normalization value. Since ‘functionality’ cannot be measured
directly, it must be derived indirectly using other direct measures. Function-oriented
metrics were first proposed by Albrecht [ALB79], who suggested a measure called the
function point. Function points are derived using an empirical relationship based on
countable (direct) measures of software's information domain and assessments of
software complexity.

Function points are computed [I[FP94] by completing the table shown in Figure 4.5.
Five information domain characteristics are determined and counts are provided in

4 A defect occurs when quality assurance activities (e.g., formal technical reviews) fail to uncover
an error in a work product produced during the software process.
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Weighting factor

Measurement parameter Count Simple Average Complex

Number of user inputs
Number of user outputs
Number of user inquiries
Number of files

Number of external interfaces

X 3 4 6 =

X 4 5 7 =

0000C

Count total .

Hooooo

the appropriate table location. Information domain values are defined in the follow-
ing manner:5

Number of user inputs. Each user input that provides distinct application-
oriented data to the software is counted. Inputs should be distinguished from
inquiries, which are counted separately.

Number of user outputs. Each user output that provides application-
oriented information to the user is counted. In this context output refers to
reports, screens, error messages, etc. Individual data items within a report
are not counted separately.

Number of user inquiries. An inquiry is defined as an on-line input that
results in the generation of some immediate software response in the form of
an on-line output. Each distinct inquiry is counted.

Number of files. Each logical master file (i.e., a logical grouping of data that
may be one part of a large database or a separate file) is counted.

Number of external interfaces. All machine readable interfaces (e.g., data
files on storage media) that are used to transmit information to another sys-
tem are counted.

Once these data have been collected, a complexity value is associated with each

count. Organizations that use function point methods develop criteria for determin-
ing whether a particular entry is simple, average, or complex. Nonetheless, the deter-
mination of complexity is somewhat subjective.

To compute function points (FP), the following relationship is used:

FP = count total X [0.65 + 0.01 X X(F})] (4-1)

where count total is the sum of all FP entries obtained from Figure 4.5.

5

In actuality, the definition of information domain values and the manner in which they are
counted are a bit more complex. The interested reader should see [IFP94] for details.
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The F; (i = 1 to 14) are "complexity adjustment values" based on responses to the
following questions [ART85]:

Does the system require reliable backup and recovery?

Are data communications required?

Are there distributed processing functions?

Is performance critical?

Will the system run in an existing, heavily utilized operational environment?
Does the system require on-line data entry?

NG wN =

Does the on-line data entry require the input transaction to be built over multiple
screens or operations?

8. Are the master files updated on-line?
9. Are the inputs, outputs, files, or inquiries complex?
10. Is the internal processing complex?
11. Isthe code designed to be reusable?
12. Are conversion and installation included in the design?
13. Is the system designed for multiple installations in different organizations?
14. Is the application designed to facilitate change and ease of use by the user?

Each of these questions is answered using a scale that ranges from 0 (not important
or applicable) to 5 (absolutely essential). The constant values in Equation (4-1) and
the weighting factors that are applied to information domain counts are determined
empirically.

Once function points have been calculated, they are used in a manner analogous
to LOC as a way to normalize measures for software productivity, quality, and other
attributes:

e Errors per FP.

e Defects per FP.

e $perFP.

e Pages of documentation per FP.

e FP per person-month.

4.3.3 Extended Function Point Metrics

The function point measure was originally designed to be applied to business infor-
mation systems applications. To accommodate these applications, the data dimen-
sion (the information domain values discussed previously) was emphasized to the
exclusion of the functional and behavioral (control) dimensions. For this reason, the
function point measure was inadequate for many engineering and embedded sys-
tems (which emphasize function and control). A number of extensions to the basic
function point measure have been proposed to remedy this situation.

A function point extension called feature points [JON91], is a superset of the function
point measure that can be applied to systems and engineering software applications.
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The feature point measure accommodates applications in which algorithmic complex-
ity is high. Real-time, process control and embedded software applications tend to have
high algorithmic complexity and are therefore amenable to the feature point.

To compute the feature point, information domain values are again counted and
weighted as described in Section 4.3.2. In addition, the feature point metric counts a
new software characteristic—algorithms. An algorithm is defined as "a bounded com-
putational problem that is included within a specific computer program” JON91]. Invert-
ing a matrix, decoding a bit string, or handling an interrupt are all examples of algorithms.

Another function point extension for real-time systems and engineered products
has been developed by Boeing. The Boeing approach integrates the data dimension
of software with the functional and control dimensions to provide a function-oriented
measure amenable to applications that emphasize function and control capabilities.
Called the 3D function point [WHI95], characteristics of all three software dimensions
are “counted, quantified, and transformed” into a measure that provides an indica-
tion of the functionality delivered by the software.6

The data dimension is evaluated in much the same way as described in Section
4.3.2. Counts of retained data (the internal program data structure; e.g., files) and
external data (inputs, outputs, inquiries, and external references) are used along with
measures of complexity to derive a data dimension count. The functional dimension
is measured by considering “the number of internal operations required to transform
input to output data” [WHI95]. For the purposes of 3D function point computation, a
“transformation” is viewed as a series of processing steps that are constrained by a
set of semantic statements. The control dimension is measured by counting the num-
ber of transitions between states.”

A state represents some externally observable mode of behavior, and a transition
occurs as a result of some event that causes the software or system to change its
mode of behavior (i.e., to change state). For example, a wireless phone contains soft-
ware that supports auto dial functions. To enter the auto-dial state from a resting state,
the user presses an Auto key on the keypad. This event causes an LCD display to
prompt for a code that will indicate the party to be called. Upon entry of the code and
hitting the Dial key (another event), the wireless phone software makes a transition
to the dialing state. When computing 3D function points, transitions are not assigned
a complexity value.

To compute 3D function points, the following relationship is used:

index=I+O+Q+F+E+T+R (4-2)

6 It should be noted that other extensions to function points for application in real-time software
work (e.g., [ALA97]) have also been proposed. However, none of these appears to be widely used
in the industry.

7 A detailed discussion of the behavioral dimension, including states and state transitions, is pre-
sented in Chapter 12.
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where I, O, Q, E E, T, and R represent complexity weighted values for the elements
discussed already: inputs, outputs, inquiries, internal data structures, external files,
transformation, and transitions, respectively. Each complexity weighted value is com-
puted using the following relationship:

complexity weighted value = NyWj; + NijgWiq + NjpyWip, (4-3)

where Nj, Nj,, and Nj, represent the number of occurrences of element 7 (e.g., out-
puts) for each level of complexity (low, medium, high); and Wy, Wj,, and Wy, are the
corresponding weights. The overall complexity of a transformation for 3D function
points is shown in Figure 4.6.

It should be noted that function points, feature points, and 3D function points rep-
resent the same thing—"functionality" or "utility" delivered by software. In fact, each
of these measures results in the same value if only the data dimension of an appli-
cation is considered. For more complex real-time systems, the feature point count is
often between 20 and 35 percent higher than the count determined using function
points alone.

The function point (and its extensions), like the LOC measure, is controversial.
Proponents claim that FP is programming language independent, making it ideal for
applications using conventional and nonprocedural languages; that it is based on
data that are more likely to be known early in the evolution of a project, making FP
more attractive as an estimation approach. Opponents claim that the method requires
some "sleight of hand" in that computation is based on subjective rather than objec-
tive data; that counts of the information domain (and other dimensions) can be dif-
ficult to collect after the fact; and that FP has no direct physical meaning—it's just a
number.
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RECONCILING DIFFERENT METRICS APPROACHES

The relationship between lines of code and function points depends upon the pro-
gramming language that is used to implement the software and the quality of the
design. A number of studies have attempted to relate FP and LOC measures. To quote
Albrecht and Gaffney [ALB83]:

The thesis of this work is that the amount of function to be provided by the application (pro-
gram) can be estimated from the itemization of the major components8 of data to be used
or provided by it. Furthermore, this estimate of function should be correlated to both the
amount of LOC to be developed and the development effort needed.

The following table [JON98] provides rough estimates of the average number of lines
of code required to build one function point in various programming languages:

Programming Language LOC/FP (average)
Assembly language 320
C 128
COBOL 106
FORTRAN 106
Pascal 90
C++ 64
Adads 53
Visual Basic 32
Smalltalk 22
Powerbuilder (code generator) 16
SQL 12

A review of these data indicates that one LOC of C++ provides approximately 1.6 times
the "functionality” (on average) as one LOC of FORTRAN. Furthermore, one LOC of a
Visual Basic provides more than three times the functionality of a LOC for a conven-
tional programming language. More detailed data on the relationship between FP
and LOC are presented in [JON98] and can be used to "backfire" (i.e., to compute the
number of function points when the number of delivered LOC are known) existing
programs to determine the FP measure for each.

LOC and FP measures are often used to derive productivity metrics. This invari-
ably leads to a debate about the use of such data. Should the LOC/person-month (or
FP/person-month) of one group be compared to similar data from another? Should
managers appraise the performance of individuals by using these metrics? The answers

8 Itis important to note that “the itemization of major components” can be interpreted in a variety
of ways. Some software engineers who work in an object-oriented development environment
(Part Four) use the number of classes or objects as the dominant size metric. A maintenance
organization might view project size in terms of the number of engineering change orders (Chap-
ter 9). An information systems organization might view the number of business processes
affected by an application.
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to these questions is an emphatic “No!” The reason for this response is that many
factors influence productivity, making for "apples and oranges" comparisons that can
be easily misinterpreted.

Function points and LOC based metrics have been found to be relatively accu-
rate predictors of software development effort and cost. However, in order to use
LOC and FP for estimation (Chapter 5), a historical baseline of information must be
established.

METRICS FOR SOFTWARE QUALITY

The overriding goal of software engineering is to produce a high-quality system, appli-
cation, or product. To achieve this goal, software engineers must apply effective meth-
ods coupled with modern tools within the context of a mature software process. In
addition, a good software engineer (and good software engineering managers) must
measure if high quality is to be realized.

The quality of a system, application, or product is only as good as the requirements
that describe the problem, the design that models the solution, the code that leads
to an executable program, and the tests that exercise the software to uncover errors.
A good software engineer uses measurement to assess the quality of the analysis and
design models, the source code, and the test cases that have been created as the soft-
ware is engineered. To accomplish this real-time quality assessment, the engineer
must use technical measures (Chapters 19 and 24) to evaluate quality in objective,
rather than subjective ways.

The project manager must also evaluate quality as the project progresses. Private
metrics collected by individual software engineers are assimilated to provide project-
level results. Although many quality measures can be collected, the primary thrust at
the project level is to measure errors and defects. Metrics derived from these mea-
sures provide an indication of the effectiveness of individual and group software qual-
ity assurance and control activities.

Metrics such as work product (e.g., requirements or design) errors per function
point, errors uncovered per review hour, and errors uncovered per testing hour pro-
vide insight into the efficacy of each of the activities implied by the metric. Error data
can also be used to compute the deféect removal efficiency (DRE) for each process frame-
work activity. DRE is discussed in Section 4.5.3.

4.5.1 An Overview of Factors That Affect Quality

Over 25 years ago, McCall and Cavano [MCC78] defined a set of quality factors that
were a first step toward the development of metrics for software quality. These fac-
tors assess software from three distinct points of view: (1) product operation (using
it), (2) product revision (changing it), and (3) product transition (modifying it to work
in a different environment; i.e., "porting" it). In their work, the authors describe the
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relationship between these quality factors (what they call a framework) and other
aspects of the software engineering process:

First, the framework provides a mechanism for the project manager to identify what
qualities are important. These qualities are attributes of the software in addition to its func-
tional correctness and performance which have life cycle implications. Such factors as main-
tainability and portability have been shown in recent years to have significant life cycle cost
impact . . .

Secondly, the framework provides a means for quantitatively assessing how well the
development is progressing relative to the quality goals established . . .

Thirdly, the framework provides for more interaction of QA personnel throughout the
development effort . . .

Lastly, . . . quality assurance personal can use indications of poor quality to help iden-
tify [better] standards to be enforced in the future.

A detailed discussion of McCall and Cavano's framework, as well as other quality fac-
tors, is presented in Chapter 19. It is interesting to note that nearly every aspect of
computing has undergone radical change as the years have passed since McCall and
Cavano did their seminal work in 1978. But the attributes that provide an indication
of software quality remain the same.

What does this mean? If a software organization adopts a set of quality factors as
a “checklist” for assessing software quality, it is likely that software built today will
still exhibit quality well into the first few decades of this century. Even as computing
architectures undergo radical change (as they surely will), software that exhibits high
quality in operation, transition, and revision will continue to serve its users well.

4.5.2 Measuring Quality

Although there are many measures of software quality, correctness, maintainability,
integrity, and usability provide useful indicators for the project team. Gilb [GIL88] sug-
gests definitions and measures for each.

Correctness. A program must operate correctly or it provides little value to
its users. Correctness is the degree to which the software performs its
required function. The most common measure for correctness is defects per
KLOC, where a defect is defined as a verified lack of conformance to require-
ments. When considering the overall quality of a software product, defects
are those problems reported by a user of the program after the program has
been released for general use. For quality assessment purposes, defects are
counted over a standard period of time, typically one year.

Maintainability. Software maintenance accounts for more effort than any
other software engineering activity. Maintainability is the ease with which a
program can be corrected if an error is encountered, adapted if its environ-
ment changes, or enhanced if the customer desires a change in require-
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ments. There is no way to measure maintainability directly; therefore, we
must use indirect measures. A simple time-oriented metric is mean-time-to-
change (MTTC), the time it takes to analyze the change request, design an
appropriate modification, implement the change, test it, and distribute the
change to all users. On average, programs that are maintainable will have a
lower MTTC (for equivalent types of changes) than programs that are not
maintainable.

Hitachi [TAJ81] has used a cost-oriented metric for maintainability called
spoilage—the cost to correct defects encountered after the software has been
released to its end-users. When the ratio of spoilage to overall project cost
(for many projects) is plotted as a function of time, a manager can determine
whether the overall maintainability of software produced by a software
development organization is improving. Actions can then be taken in
response to the insight gained from this information.

Integrity. Software integrity has become increasingly important in the age
of hackers and firewalls. This attribute measures a system's ability to with-

stand attacks (both accidental and intentional) to its security. Attacks can be
made on all three components of software: programs, data, and documents.

To measure integrity, two additional attributes must be defined: threat and
security. Threat is the probability (which can be estimated or derived from
empirical evidence) that an attack of a specific type will occur within a given
time. Security is the probability (which can be estimated or derived from
empirical evidence) that the attack of a specific type will be repelled. The
integrity of a system can then be defined as

integrity = summation [(1 —threat) X (1 - security)]

where threat and security are summed over each type of attack.

Usability. The catch phrase "user-friendliness" has become ubiquitous in
discussions of software products. If a program is not user-friendly, it is often
doomed to failure, even if the functions that it performs are valuable. Usabil-
ity is an attempt to quantify user-friendliness and can be measured in terms
of four characteristics: (1) the physical and or intellectual skill required to
learn the system, (2) the time required to become moderately efficient in the
use of the system, (3) the net increase in productivity (over the approach that
the system replaces) measured when the system is used by someone who is
moderately efficient, and (4) a subjective assessment (sometimes obtained
through a questionnaire) of users attitudes toward the system. Detailed dis-
cussion of this topic is contained in Chapter 15.

The four factors just described are only a sampling of those that have been proposed
as measures for software quality. Chapter 19 considers this topic in additional detail.
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4.5.3 Defect Removal Efficiency

A quality metric that provides benefit at both the project and process level is defect
removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of qual-
ity assurance and control activities as they are applied throughout all process frame-
work activities.

When considered for a project as a whole, DRE is defined in the following
manner:

DRE = E/(E + D) (4-4)

where E is the number of errors found before delivery of the software to the end-user
and D is the number of defects found after delivery.

The ideal value for DRE is 1. That is, no defects are found in the software. Realis-
tically, D will be greater than 0, but the value of DRE can still approach 1. As E increases
(for a given value of D), the overall value of DRE begins to approach 1. In fact, as E
increases, it is likely that the final value of D will decrease (errors are filtered out before
they become defects). If used as a metric that provides an indicator of the filtering abil-
ity of quality control and assurance activities, DRE encourages a software project team
to institute techniques for finding as many errors as possible before delivery.

DRE can also be used within the project to assess a team'’s ability to find errors
before they are passed to the next framework activity or software engineering task.
For example, the requirements analysis task produces an analysis model that can be
reviewed to find and correct errors. Those errors that are not found during the review
of the analysis model are passed on to the design task (where they may or may not
be found). When used in this context, we redefine DRE as

DRE; = Ei/ (Ej + Ej, ) (4-5)

where E; is the number of errors found during software engineering activity i and
Ej,; is the number of errors found during software engineering activity i+! that are
traceable to errors that were not discovered in software engineering activity 1.

A quality objective for a software team (or an individual software engineer) is to
achieve DRE; that approaches 1. That is, errors should be filtered out before they are
passed on to the next activity.

INTEGRATING METRICS WITHIN THE SOFTWARE PROCESS

The majority of software developers still do not measure, and sadly, most have little
desire to begin. As we noted earlier in this chapter, the problem is cultural. Attempt-
ing to collect measures where none had been collected in the past often precipitates
resistance. "Why do we need to do this?" asks a harried project manager. "I don't see
the point," complains an overworked practitioner.

In this section, we consider some arguments for software metrics and present an
approach for instituting a metrics collection program within a software engineering
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organization. But before we begin, some words of wisdom are suggested by Grady
and Caswell [GRAS87]:

Some of the things we describe here will sound quite easy. Realistically, though, establish-
ing a successful company-wide software metrics program is hard work. When we say that
you must wait at least three years before broad organizational trends are available, you get
some idea of the scope of such an effort.

The caveat suggested by the authors is well worth heeding, but the benefits of mea-
surement are so compelling that the hard work is worth it.

4.6.1 Arguments for Software Metrics

Why is it so important to measure the process of software engineering and the prod-
uct (software) that it produces? The answer is relatively obvious. If we do not mea-
sure, there no real way of determining whether we are improving. And if we are not
improving, we are lost.

By requesting and evaluating productivity and quality measures, senior manage-
ment can establish meaningful goals for improvement of the software engineering
process. In Chapter 1 we noted that software is a strategic business issue for many
companies. If the process through which it is developed can be improved, a direct
impact on the bottom line can result. But to establish goals for improvement, the cur-
rent status of software development must be understood. Hence, measurement is
used to establish a process baseline from which improvements can be assessed.

The day-to-day rigors of software project work leave little time for strategic think-
ing. Software project managers are concerned with more mundane (but equally impor-
tant) issues: developing meaningful project estimates, producing higher-quality
systems, getting product out the door on time. By using measurement to establish a
project baseline, each of these issues becomes more manageable. We have already
noted that the baseline serves as a basis for estimation. Additionally, the collection
of quality metrics enables an organization to "tune" its software process to remove
the "vital few" causes of defects that have the greatest impact on software develop-
ment.?

At the project and technical levels (in the trenches), software metrics provide imme-
diate benefit. As the software design is completed, most developers would be anx-
ious to obtain answers to the questions such as

e Which user requirements are most likely to change?
e Which components in this system are most error prone?
e How much testing should be planned for each component?

e How many errors (of specific types) can I expect when testing commences?

9 These ideas have been formalized into an approach called statistical software quality assurance

and are discussed in detail in Chapter 8.
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Answers to these questions can be determined if metrics have been collected and
used as a technical guide. In later chapters, we examine how this is done.

4.6.2 Establishing a Baseline

By establishing a metrics baseline, benefits can be obtained at the process, project,
and product (technical) levels. Yet the information that is collected need not be fun-
damentally different. The same metrics can serve many masters. The metrics base-
line consists of data collected from past software development projects and can be
as simple as the table presented in Figure 4.4 or as complex as a comprehensive data-
base containing dozens of project measures and the metrics derived from them.

To be an effective aid in process improvement and/or cost and effort estimation,
baseline data must have the following attributes: (1) data must be reasonably accu-
rate—"guestimates" about past projects are to be avoided; (2) data should be col-
lected for as many projects as possible; (3) measures must be consistent, for example,
a line of code must be interpreted consistently across all projects for which data are
collected; (4) applications should be similar to work that is to be estimated—it makes
little sense to use a baseline for batch information systems work to estimate a real-
time, embedded application.

4.6.3 Metrics Collection, Computation, and Evaluation

The process for establishing a baseline is illustrated in Figure 4.7. Ideally, data needed
to establish a baseline has been collected in an ongoing manner. Sadly, this is rarely
the case. Therefore, data collection requires a historical investigation of past projects
to reconstruct required data. Once measures have been collected (unquestionably
the most difficult step), metrics computation is possible. Depending on the breadth
of measures collected, metrics can span a broad range of LOC or FP metrics as well
as other quality- and project-oriented metrics. Finally, metrics must be evaluated and
applied during estimation, technical work, project control, and process improvement.
Metrics evaluation focuses on the underlying reasons for the results obtained and
produces a set of indicators that guide the project or process.

MANAGING VARIATION: STATISTICAL PROCESS
CONTROL

Because the software process and the product it produces both are influenced by
many parameters (e.g., the skill level of practitioners, the structure of the software
team, the knowledge of the customer, the technology that is to be implemented, the
tools to be used in the development activity), metrics collected for one project or
product will not be the same as similar metrics collected for another project. In fact,
there is often significant variability in the metrics we collect as part of the software
process.
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Since the same process metrics will vary from project to project, how can we tell if
improved (or degraded) metrics values that occur as consequence of improvement activ-
ities are having a quantitative impact? How do we know whether we're looking at a sta-
tistically valid trend or whether the “trend” is simply a result of statistical noise? When
are changes (either positive or negative) to a particular software metric meaningful?

A graphical technique is available for determining whether changes and varia-
tion in metrics data are meaningful. Called the control chart and developed by Wal-
ter Shewart in the 1920s,10 this technique enables individuals interested in software
process improvement to determine whether the dispersion (variability) and “location”
(moving average) of process metrics are stable (i.e., the process exhibits only natural
or controlled changes) or unstable (i.e., the process exhibits out-of-control changes
and metrics cannot be used to predict performance). Two different types of control
charts are used in the assessment of metrics data [ZUL99]: (1) the moving range con-
trol chart and (2) the individual control chart.

To illustrate the control chart approach, consider a software organization that col-
lects the process metric, errors uncovered per review hour, E,. Over the past 15 months,
the organization has collected E, for 20 small projects in the same general software
development domain. The resultant values for E, are represented in Figure 4.8. In the
figure, E, varies from a low of 1.2 for project 3 to a high of 5.9 for project 17. In an
effort to improve the effectiveness of reviews, the software organization provided
training and mentoring to all project team members beginning with project 11.

10 It should be noted that, although the control chart was originally developed for manufacturing
processes, it is equally applicable for software processes.
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Richard Zultner provides an overview of the procedure required to develop a mov-
ing range (mR) control chart for determining the stability of the process [ZUL99]:

1. Calculate the moving ranges: the absolute value of the successive differences between
each pair of data points . . . Plot these moving ranges on your chart.

2. Calculate the mean of the moving ranges . . . plot this (‘“mR bar”) as the center line on
your chart.

3. Multiply the mean by 3.268. Plot this line as the upper control limit [UCL]. This line is
three standard deviations above the mean.

Using the data represented in Figure 4.8 and the steps suggested by Zultner, we
develop an mR control chart shown in Figure 4.9. The mR bar (mean) value for the
moving range data is 1.71. The upper control limit is 5.58.

To determine whether the process metrics dispersion is stable, a simple question
is asked: Are all the moving range values inside the UCL? For the example noted, the
answer is “yes.” Hence, the metrics dispersion is stable.

The individual control chart is developed in the following manner:!!

Plot individual metrics values as shown in Figure 4.8.
2. Compute the average value, Ap,, for the metrics values.
Multiply the mean of the mR values (the mR bar) by 2.660 and add A,,, com-

puted in step 2. This results in the upper natural process limit (UNPL). Plot the
UNPL.

4. Multiply the mean of the mR values (the mR bar) by 2.660 and subtract this
amount from A, computed in step 2. This results in the lower natural process
limit (LNPL). Plot the LNPL. If the LNPL is less than 0.0, it need not be plotted
unless the metric being evaluated takes on values that are less than 0.0.

5. Compute a standard deviation as (UNPL — A,;)/3. Plot lines one and two
standard deviations above and below A,. If any of the standard deviation

11 The discussion that follows is a summary of steps suggested by Zultner [ZUL99].
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lines is less than 0.0, it need not be plotted unless the metric being evaluated

takes on values that are less than 0.0.

Applying these steps to the data represented in Figure 4.8, we derive an individual

control chart as shown in Figure 4.10.

Zultner [ZUL99] reviews four criteria, called zone rules, that may be used to eval-
uate whether the changes represented by the metrics indicate a process that is in
control or out of control. If any of the following conditions is true, the metrics data

indicate a process that is out of control:

1. A single metrics value lies outside the UNPL.

2. Two out of three successive metrics values lie more than two standard devia-

tions away from Ap,.

3. Four out of five successive metrics values lie more than one standard devia-

tion away from Ay,

4. Eight consecutive metrics values lie on one side of Ap,.
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Since all of these conditions fail for the values shown in Figure 4.10, the metrics data
are derived from a stable process and trend information can be legitimately inferred
from the metrics collected. Referring to Figure 4.10, it can be seen that the variabil-
ity of E, decreases after project 10 (i.e., after an effort to improve the effectiveness of
reviews). By computing the mean value for the first 10 and last 10 projects, it can be
shown that the mean value of E, for projects 11-20 shows a 29 percent improvement
over E, for projects 1-10. Since the control chart indicates that the process is stable,
it appears that efforts to improve review effectiveness are working.

METRICS FOR SMALL ORGANIZATIONS

The vast majority of software development organizations have fewer than 20 soft-
ware people. It is unreasonable, and in most cases unrealistic, to expect that such
organizations will develop comprehensive software metrics programs. However, it
is reasonable to suggest that software organizations of all sizes measure and then
use the resultant metrics to help improve their local software process and the qual-
ity and timeliness of the products they produce. Kautz [KAU99] describes a typical
scenario that occurs when metrics programs are suggested for small software orga-
nizations:

Originally, the software developers greeted our activities with a great deal of skepticism,
but they eventually accepted them because we kept our measurements simple, tailored
them to each organization, and ensured that they produced valuable information. In the
end, the programs provided a foundation for taking care of customers and for planning and
carrying out future work.

What Kautz suggests is a commonsense approach to the implementation of any soft-
ware process related activity: keep it simple, customize to meet local needs, and be
sure it adds value. In the paragraphs that follow, we examine how these guidelines
relate to metrics for small shops.

“Keep it simple” is a guideline that works reasonably well in many activities. But
how do we derive a “simple” set of software metrics that still provides value, and how
can we be sure that these simple metrics will meet the needs of a particular software
organization? We begin by focusing not on measurement but rather on results. The
software group is polled to define a single objective that requires improvement. For
example, “reduce the time to evaluate and implement change requests.” A small orga-
nization might select the following set of easily collected measures:

e Time (hours or days) elapsed from the time a request is made until evalua-
tion is complete, (g eye.
e Effort (person-hours) to perform the evaluation, We,4.

e Time (hours or days) elapsed from completion of evaluation to assignment of
change order to personnel, teq.



4.9

WebRef

A Guidebook for Goal-
Driven Software
Measurement can be
downloaded from
www.sei.cmu.edu

CHAPTER 4 SOFTWARE PROCESS AND PROJECT METRICS 105

e Effort (person-hours) required to make the change, Wepange-
* Time required (hours or days) to make the change, (cpange-
* Errors uncovered during work to make change, Ecpange-

¢ Defects uncovered after change is released to the customer base, Depgnge-

Once these measures have been collected for a number of change requests, it is pos-
sible to compute the total elapsed time from change request to implementation of
the change and the percentage of elapsed time absorbed by initial queuing, evalua-
tion and change assignment, and change implementation. Similarly, the percentage
of effort required for evaluation and implementation can be determined. These met-
rics can be assessed in the context of quality data, Ecpgnge and Depgnge- The percent-
ages provide insight into where the change request process slows down and may
lead to process improvement steps to reduce tgyeue, Wevar, teval, Wenange, and/or
Echange- In addition, the defect removal efficiency can be computed as

DRE = Echange / (Echange + Dchange)

DRE can be compared to elapsed time and total effort to determine the impact of
quality assurance activities on the time and effort required to make a change.

For small groups, the cost of collecting measures and computing metrics ranges
from 3 to 8 percent of project budget during the learning phase and then drops to less
than 1 percent of project budget after software engineers and project managers have
become familiar with the metrics program [GRA99]. These costs can show a sub-
stantial return on investment if the insights derived from metrics data lead to mean-
ingful process improvement for the software organization.

ESTABLISHING A SOFTWARE METRICS PROGRAM

The Software Engineering Institute has developed a comprehensive guidebook [PAR96]
for establishing a “goal-driven” software metrics program. The guidebook suggests
the following steps:

Identify your business goals.

Identify what you want to know or learn.

Identify your subgoals.

1.
2
3
4. Identify the entities and attributes related to your subgoals.
5. Formalize your measurement goals.

6

Identify quantifiable questions and the related indicators that you will use to
help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators that
help answer your questions.

8. Define the measures to be used, and make these definitions operational.
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9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

A detailed discussion of these steps is best left to the SEI's guidebook. However, a
brief overview of key points is worthwhile.

Because software supports business functions, differentiates computer-based sys-
tems or products, or acts as a product in itself, goals defined for the business can
almost always be traced downward to specific goals at the software engineering level.
For example, consider a company that makes advanced home security systems which
have substantial software content. Working as a team, software engineering and busi-
ness managers can develop a list of prioritized business goals:

Improve our customers’ satisfaction with our products.
Make our products easier to use.
Reduce the time it takes us to get a new product to market.

Make support for our products easier.

o & W N =

Improve our overall profitability.

The software organization examines each business goal and asks: “What activi-
ties do we manage or execute and what do we want to improve within these activi-
ties?” To answer these questions the SEI recommends the creation of an
“entity-question list” in which all things (entities) within the software process that are
managed or influenced by the software organization are noted. Examples of entities
include development resources, work products, source code, test cases, change
requests, software engineering tasks, and schedules. For each entity listed, software
people develop a set of questions that assess quantitative characteristics of the entity
(e.g., size, cost, time to develop). The questions derived as a consequence of the cre-
ation of an entity-question list lead to the derivation of a set of subgoals that relate
directly to the entities created and the activities performed as part of the software
process.

Consider the fourth goal: “Make support for our products easier.” The following
list of questions might be derived for this goal [PAR96]:

e Do customer change requests contain the information we require to adequately
evaluate the change and then implement it in a timely manner?

e How large is the change request backlog?

e s our response time for fixing bugs acceptable based on customer need?

e Is our change control process (Chapter 9) followed?

e Are high-priority changes implemented in a timely manner?

Based on these questions, the software organization can derive the following sub-
goal: Improve the performance of the change management process. The software
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process entities and attributes that are relevant to the subgoal are identified and mea-
surement goals associated with them are delineated.

The SEI [PAR96] provides detailed guidance for steps 6 through 10 of its goal-
driven measurement approach. In essence, a process of stepwise refinement is applied
in which goals are refined into questions that are further refined into entities and
attributes that are then refined into metrics.

SUMMARY

Measurement enables managers and practitioners to improve the software process;
assist in the planning, tracking, and control of a software project; and assess the qual-
ity of the product (software) that is produced. Measures of specific attributes of the
process, project, and product are used to compute software metrics. These metrics
can be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing insight
into the effectiveness of a software process. Project metrics are tactical. They enable
a project manager to adapt project work flow and technical approach in a real-time
manner.

Both size- and function-oriented metrics are used throughout the industry. Size-
oriented metrics use the line of code as a normalizing factor for other measures such
as person-months or defects. The function point is derived from measures of the infor-
mation domain and a subjective assessment of problem complexity.

Software quality metrics, like productivity metrics, focus on the process, the proj-
ect, and the product. By developing and analyzing a metrics baseline for quality, an
organization can correct those areas of the software process that are the cause of
software defects.

Metrics are meaningful only if they have been examined for statistical validity. The
control chart is a simple method for accomplishing this and at the same time exam-
ining the variation and location of metrics results.

Measurement results in cultural change. Data collection, metrics computation,
and metrics analysis are the three steps that must be implemented to begin a met-
rics program. In general, a goal-driven approach helps an organization focus on the
right metrics for its business. By creating a metrics baseline—a database containing
process and product measurements—software engineers and their managers can
gain better insight into the work that they do and the product that they produce.
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PROBLEMS AND POINTS TO PONDER

4.1. Suggest three measures, three metrics, and corresponding indicators that might
be used to assess an automobile.

4.2. Suggest three measures, three metrics, and corresponding indicators that might
be used to assess the service department of an automobile dealership.

4.3. Describe the difference between process and project metrics in your own words.

4.4. Why should some software metrics be kept “private”? Provide examples of three
metrics that should be private. Provide examples of three metrics that should be public.

4.5. Obtain a copy of Humphrey (Introduction to the Personal Software Process, Addison-
Wesley, 1997) and write a one- or two-page summary that outlines the PSP approach.

4.6. Grady suggests an etiquette for software metrics. Can you add three more rules
to those noted in Section 4.2.1?

4.7. Attempt to complete the fishbone diagram shown in Figure 4.3. That is, fol-
lowing the approach used for “incorrect” specifications, provide analogous informa-
tion for “missing, ambiguous, and changed” specifications.

4.8. What is an indirect measure and why are such measures common in software
metrics work?

4.9. Team A found 342 errors during the software engineering process prior to release.
Team B found 184 errors. What additional measures would have to be made for proj-
ects A and B to determine which of the teams eliminated errors more efficiently? What
metrics would you propose to help in making the determination? What historical data
might be useful?

4.10. Present an argument against lines of code as a measure for software produc-
tivity. Will your case hold up when dozens or hundreds of projects are considered?

4.11. Compute the function point value for a project with the following information
domain characteristics:

Number of user inputs: 32

Number of user outputs: 60

Number of user inquiries: 24

Number of files: 8

Number of external interfaces: 2
Assume that all complexity adjustment values are average.

4.12. Compute the 3D function point value for an embedded system with the fol-
lowing characteristics:

Internal data structures: 6

External data structure: 3
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Number of user inputs: 12

Number of user outputs: 60

Number of user inquiries: 9

Number of external interfaces: 3

Transformations: 36

Transitions: 24
Assume that the complexity of these counts is evenly divided between low, average,
and high.

4.13. The software used to control a photocopier requires 32,000 of C and 4,200
lines of Smalltalk. Estimate the number of function points for the software inside the
photocopier.

4.14. McCall and Cavano (Section 4.5.1) define a "framework" for software quality.
Using information contained in this and other books, expand each of the three major
"points of view" into a set of quality factors and metrics.

4.15. Develop your own metrics (do not use those presented in this chapter) for cor-
rectness, maintainability, integrity, and usability. Be sure that they can be translated
into quantitative values.

4.16. Is it possible for spoilage to increase while at the same time defects/KLOC
decrease? Explain.

4.17. Does the LOC measure make any sense when fourth generation techniques
are used? Explain.

4.18. A software organization has DRE data for 15 projects over the past two years.
The values collected are 0.81, 0.71, 0.87, 0.54, 0.63, 0.71, 0.90, 0.82, 0.61, 0.84, 0.73,
0.88, 0.74, 0.86, 0.83. Create mR and individual control charts to determine whether
these data can be used to assess trends.

FURTHER READINGS AND INFORMATION SOURCES

Software process improvement (SPI) has received a significant amount of attention
over the past decade. Since measurement and software metrics are key to success-
fully improving the software process, many books on SPI also discuss metrics. Worth-
while additions to the literature include:
Burr, A. and M. Owen, Statistical Methods for Software Quality, International Thomson Pub-
lishing, 1996.
El Emam, K. and N. Madhaviji (eds.), Elements of Software Process Assessment and Improve-
ment, IEEE Computer Society, 1999.
Florac, W.A. and A.D. Carleton, Measuring the Software Process: Statistical Process Control for
Software Process Improvement, Addison-Wesley, 1999.
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Garmus, D. and D. Herron, Measuring the Software Process: A Practical Guide to Functional Mea-
surements, Prentice-Hall, 1996.

Humphrey, W., Introduction to the Team Software Process, Addison-Wesley Longman, 2000.
Kan, S.H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1995.

Humphrey [HUM95], Yeh (Software Process Control, McGraw-Hill, 1993), Hetzel [HET93],
and Grady [GRA92] discuss how software metrics can be used to provide the indica-
tors necessary to improve the software process. Putnam and Myers (Executive Brief-
ing: Controlling Software Development, IEEE Computer Society, 1996) and Pulford and
his colleagues (A Quantitative Approach to Software Management, Addison-Wesley,
1996) discuss process metrics and their use from a management point of view.

Weinberg (Quality Software Management, Volume 2: First Order Measurement, Dorset
House, 1993) presents a useful model for observing software projects, ascertaining
the meaning of the observation, and determining its significance for tactical and strate-
gic decisions. Garmus and Herron (Measuring the Software Process, Prentice-Hall,
1996) discuss process metrics with an emphasis on function point analysis. The Soft-
ware Productivity Consortium (The Software Measurement Guidebook, Thomson Com-
puter Press, 1995) provides useful suggestions for instituting an effective metrics
approach. Oman and Pfleeger (Applying Software Metrics, IEEE Computer Society Press,
1997) have edited an excellent anthology of important papers on software metrics.
Park, et al. [PAR96] have developed a detailed guidebook that provides step-by-step
suggestions for instituting a software metrics program for software process improve-
ment.

The newsletter IT Metrics (edited by Howard Rubin and published by Cutter Infor-
mation Services) presents useful commentary on the state of software metrics in the
industry. The magazines Cutter IT Journal and Software Development have regular arti-
cles and entire features dedicated to software metrics.

A wide variety of information sources on software process and project metrics are
available on the Internet. An up-to-date list of World Wide Web references that are
relevant to the software process and project metrics can be found at the SEPA Web
site:
http://www.mhhe.com/engcs/compsci/pressman/resources/
process-metrics.mhtml
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planning activities and project planning provides the road map for successful
software engineering, we would be ill-advised to embark without it.
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QUICK What is it? Software project plon- tems and products cost considercibly more to build
than a large house, it would seem recsonable to

develop an estimate before you start creating the

ning actually encompasses all of
the activities we discuss in Chap-

LOOK

ters 5 through 9. However, in the context of this
chapter, planning involves estimation—your
attempt to determine how much money, how
much effort, how momy resources, cnd how much
time it will take to build a specific software-based
system or product.

software.

What are the steps? Estimation begins with a descrip-

tion of the scope of the product. Until the scope is
“bounded” it's not possible to develop a mean-
ingful estimate. The problem is then decomposed
into a set of smaller problems and each of these

Who does it? Softwore momagers—using informartion is estimarted using historical data ond experience
as guides. It is advisable to generate your esti-
mates using at least two different methods (as a
cross check). Problem complexity cnd risk are con-

sidered before a final estimate is made.

solicited from customers cnd software engineers
and software metrics data collected from past
projects.

Why is it important? Would you build a house with-
out knowing how much you were about to spend?  What is the work product? A simple table delineat-

Of course not, cnd since most computer-based sys- ing the tasks to be performed, the functions to be >
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ject resources is also produced.
How do I ensure that I've done it right? That's hard,
because you won't really know until the project has
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been completed. However, if you have experience
ond follow a systematic approach, generate esti-
mates using solid historical data, crecte estimartion
data points using at least two different methods,

implemented, ond the cost, effort,
and time involved for each is
generated. A list of required pro-

ond factor in complexity and risk, you com feel con-
fident that you've given it your best shot.

OBSERVATIONS ON ESTIMATING

A leading executive was once asked what single characteristic was most important
when selecting a project manager. His response: "a person with the ability to know
what will go wrong before it actually does . . ." We might add: "and the courage to
estimate when the future is cloudy."

Estimation of resources, cost, and schedule for a software engineering effort
requires experience, access to good historical information, and the courage to com-
mit to quantitative predictions when qualitative information is all that exists. Esti-
mation carries inherent risk! and this risk leads to uncertainty.

Project complexity has a strong effect on the uncertainty inherent in planning. Com-
plexity, however, is a relative measure that is affected by familiarity with past effort.
The first-time developer of a sophisticated e-commerce application might consider
it to be exceedingly complex. However, a software team developing its tenth
e-commerce Web site would consider such work run of the mill. A number of quan-
titative software complexity measures have been proposed [ZUS97]. Such measures
are applied at the design or code level and are therefore difficult to use during soft-
ware planning (before a design and code exist). However, other, more subjective
assessments of complexity (e.g., the function point complexity adjustment factors
described in Chapter 4) can be established early in the planning process.

Project size is another important factor that can affect the accuracy and efficacy of
estimates. As size increases, the interdependency among various elements of the
software grows rapidly.2 Problem decomposition, an important approach to esti-
mating, becomes more difficult because decomposed elements may still be formida-
ble. To paraphrase Murphy's law: "What can go wrong will go wrong"—and if there
are more things that can fail, more things will fail.

The degree of structural uncertainiy also has an effect on estimation risk. In this
context, structure refers to the degree to which requirements have been solidified,
the ease with which functions can be compartmentalized, and the hierarchical nature
of the information that must be processed.

—_—

Systematic techniques for risk analysis are presented in Chapter 6.

2 Size often increases due to the “scope creep” that occurs when the customer changes require-
ments. Increases in project size can have a geometric impact on project cost and schedule (M.
Mah, personal communication).
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The availability of historical information has a strong influence on estimation risk.
By looking back, we can emulate things that worked and improve areas where prob-
lems arose. When comprehensive software metrics (Chapter 4) are available for past
projects, estimates can be made with greater assurance, schedules can be established
to avoid past difficulties, and overall risk is reduced.

Risk is measured by the degree of uncertainty in the quantitative estimates estab-
lished for resources, cost, and schedule. If project scope is poorly understood or proj-
ect requirements are subject to change, uncertainty and risk become dangerously
high. The software planner should demand completeness of function, performance,
and interface definitions (contained in a System Specification). The planner, and more
important, the customer should recognize that variability in software requirements
means instability in cost and schedule.

However, a project manager should not become obsessive about estimation. Mod-
ern software engineering approaches (e.g., evolutionary process models) take an iter-
ative view of development. In such approaches, it is possible3 to revisit the estimate
(as more information is known) and revise it when the customer makes changes to
requirements.

PROJECT PLANNING OBJECTIVES

The objective of software project planning is to provide a framework that enables the
manager to make reasonable estimates of resources, cost, and schedule. These esti-
mates are made within a limited time frame at the beginning of a software project
and should be updated regularly as the project progresses. In addition, estimates
should attempt to define best case and worst case scenarios so that project outcomes
can be bounded.

The planning objective is achieved through a process of information discovery that
leads to reasonable estimates. In the following sections, each of the activities asso-
ciated with software project planning is discussed.

SOFTWARE SCOPE

The first activity in software project planning is the determination of software scope.
Function and performance allocated to software during system engineering (Chap-
ter 10) should be assessed to establish a project scope that is unambiguous and under-
standable at the management and technical levels. A statement of software scope
must be bounded.

Software scope describes the data and control to be processed, function, perfor-
mance, constraints, interfaces, and reliability. Functions described in the statement

3 This is not meant to imply that it is always politically acceptable to modify initial estimates. A
mature software organization and its managers recognize that change is not free. And yet, many
customers demand (incorrectly) that an estimate once made must be maintained regardless of
changing circumstances.
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of scope are evaluated and in some cases refined to provide more detail prior to the
beginning of estimation. Because both cost and schedule estimates are functionally
oriented, some degree of decomposition is often useful. Performance considerations
encompass processing and response time requirements. Constraints identify limits
placed on the software by external hardware, available memory, or other existing
systems.

5.3.1 Obtaining Information Necessary for Scope

Things are always somewhat hazy at the beginning of a software project. A need has
been defined and basic goals and objectives have been enunciated, but the information
necessary to define scope (a prerequisite for estimation) has not yet been delineated.

The most commonly used technique to bridge the communication gap between
the customer and developer and to get the communication process started is to
conduct a preliminary meeting or interview. The first meeting between the soft-
ware engineer (the analyst) and the customer can be likened to the awkwardness
of a first date between two adolescents. Neither person knows what to say or ask;
both are worried that what they do say will be misinterpreted; both are thinking
about where it might lead (both likely have radically different expectations here);
both want to get the thing over with; but at the same time, both want it to be a
success.

Yet, communication must be initiated. Gause and Weinberg [GAU89] suggest that
the analyst start by asking context-free questions; that is, a set of questions that will
lead to a basic understanding of the problem, the people who want a solution, the
nature of the solution desired, and the effectiveness of the first encounter itself.

The first set of context-free questions focuses on the customer, the overall goals
and benefits. For example, the analyst might ask:

¢ Who is behind the request for this work?

e Who will use the solution?

e What will be the economic benefit of a successful solution?
¢ Is there another source for the solution?

The next set of questions enables the analyst to gain a better understanding of the
problem and the customer to voice any perceptions about a solution:

¢ How would you (the customer) characterize "good" output that would be
generated by a successful solution?
¢ What problem(s) will this solution address?

e Can you show me (or describe) the environment in which the solution will be
used?

e Will any special performance issues or constraints affect the way the solution
is approached?
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The final set of questions focuses on the effectiveness of the meeting. Gause and
Weinberg call these "meta-questions" and propose the following (abbreviated) list:

e Are you the right person to answer these questions? Are answers "official"?
e Are my questions relevant to the problem that you have?

e Am I asking too many questions?

e Can anyone else provide additional information?

¢ Should I be asking you anything else?

These questions (and others) will help to "break the ice" and initiate the communi-
cation that is essential to establish the scope of the project. But a question and answer
meeting format is not an approach that has been overwhelmingly successful. In fact,
the Q&A session should be used for the first encounter only and then be replaced
by a meeting format that combines elements of problem solving, negotiation, and
specification.

Customers and software engineers often have an unconscious "us and them" mind-
set. Rather than working as a team to identify and refine requirements, each con-
stituency defines its own "territory" and communicates through a series of memos,
formal position papers, documents, and question and answer sessions. History has
shown that this approach works poorly. Misunderstandings abound, important infor-
mation is omitted, and a successful working relationship is never established.

With these problems in mind, a number of independent investigators have devel-
oped a team-oriented approach to requirements gathering that can be applied to
help establish the scope of a project. Called facilitated application specification tech-
niques (FAST), this approach encourages the creation of a joint team of customers
and developers who work together to identify the problem, propose elements
of the solution, negotiate different approaches, and specify a preliminary set of
requirements.

5.3.2 Feasibility

Once scope has been identified (with the concurrence of the customer), it is reason-
able to ask: “Can we build software to meet this scope? Is the project feasible?” All
too often, software engineers rush past these questions (or are pushed past them by
impatient managers or customers), only to become mired in a project that is doomed
from the onset. Putnam and Myers [PUT97a] address this issue when they write:

... not everything imaginable is feasible, not even in software, evanescent as it may appear
to outsiders. On the contrary, software feasibility has four solid dimensions: Technology—
Is a project technically feasible? Is it within the state of the art? Can defects be reduced to
a level matching the application’s needs? Finance—Is it financially feasible? Can develop-
ment be completed at a cost the software organization, its client, or the market can afford?
Time—Will the project’s time-to-market beat the competition? Resources—Does the orga-
nization have the resources needed to succeed?
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For some projects in established areas the answers are easy. You have done projects
like this one before. After a few hours or sometimes a few weeks of investigation, you are
sure you can do it again.

Projects on the margins of your experience are not so easy. A team may have to spend
several months discovering what the central, difficult-to-implement requirements of a new
application actually are. Do some of these requirements pose risks that would make the
project infeasible? Can these risks be overcome? The feasibility team ought to carry initial
architecture and design of the high-risk requirements to the point at which it can answer
these questions. In some cases, when the team gets negative answers, a reduction in require-
ments may be negotiated.

Meantime, the cartoon people [senior managers] are drumming their fingers nervously
on their large desks. Often, they wave their fat cigars in a lordly manner and yell impatiently
through the smoke screen, “Enough. Do it!”

Many of the projects that appear in the newspapers a few years later as whopping fail-
ures got started this way.

Putnam and Myers correctly suggest that scoping is not enough. Once scope is under-
stood, the software team and others must work to determine if it can be done within
the dimensions just noted. This is a crucial, although often overlooked, part of the
estimation process.

5.3.3 A Scoping Example

Communication with the customer leads to a definition of the data and control that
are processed, the functions that must be implemented, the performance and con-
straints that bound the system, and related information. As an example, consider
software for a conveyor line sorting system (CLSS). The statement of scope for CLSS
follows:

The conveyor line sorting system (CLSS) sorts boxes moving along a conveyor line. Each
box is identified by a bar code that contains a part number and is sorted into one of six bins
at the end of the line. The boxes pass by a sorting station that contains a bar code reader
and a PC. The sorting station PC is connected to a shunting mechanism that sorts the boxes
into the bins. Boxes pass in random order and are evenly spaced. The line is moving at five
feet per minute. CLSS is depicted schematically in Figure 5.1.

CLSS software receives input information from a bar code reader at time intervals that
conform to the conveyor line speed. Bar code data will be decoded into box identification
format. The software will do a look-up in a part number database containing a maximum
of 1000 entries to determine proper bin location for the box currently at the reader (sorting
station). The proper bin location is passed to a sorting shunt that will position boxes in the
appropriate bin. A record of the bin destination for each box will be maintained for later
recovery and reporting. CLSS software will also receive input from a pulse tachometer that
will be used to synchronize the control signal to the shunting mechanism. Based on the
number of pulses generated between the sorting station and the shunt, the software will
produce a control signal to the shunt to properly position the box.
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The project planner examines the statement of scope and extracts all important soft-
ware functions. This process, called decomposition, was discussed in Chapter 3 and
results in the following functions:4

e Read bar code input.

¢ Read pulse tachometer.

e Decode part code data.

e Do database look-up.

e Determine bin location.

e Produce control signal for shunt.

e Maintain record of box destinations.

In this case, performance is dictated by conveyor line speed. Processing for each
box must be completed before the next box arrives at the bar code reader. The CLSS
software is constrained by the hardware it must access (the bar code reader, the shunt,
the PC), the available memory, and the overall conveyor line configuration (evenly
spaced boxes).

Function, performance, and constraints must be evaluated together. The same func-

tion can precipitate an order of magnitude difference in development effort when con-
sidered in the context of different performance bounds. The effort and cost required

4 Inreality, the functional decomposition is performed during system engineering (Chapter 10). The
planner uses information derived from the System Specification to define software functions.
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to develop CLSS software would be dramatically different if function remains the same
(i.e., put boxes into bins) but performance varies. For instance, if the conveyor line
average speed increases by a factor of 10 (performance) and boxes are no long spaced
evenly (a constraint), software would become considerably more complex—thereby
requiring more effort. Function, performance, and constraints are intimately connected.

Software interacts with other elements of a computer-based system. The planner
considers the nature and complexity of each interface to determine any effect on
development resources, cost, and schedule. The concept of an interface is interpreted
to include (1) the hardware (e.g., processor, peripherals) that executes the software
and devices (e.g., machines, displays) indirectly controlled by the software, (2) soft-
ware that already exists (e.g., database access routines, reusable software compo-
nents, operating system) and must be linked to the new software, (3) people that
make use of the software via keyboard or other I/0 devices, and (4) procedures that
precede or succeed the software as a sequential series of operations. In each case,
the information transfer across the interface must be clearly understood.

The least precise aspect of software scope is a discussion of reliability. Software
reliability measures do exist (see Chapter 8) but they are rarely used at this stage of
a project. Classic hardware reliability characteristics like mean-time-between-failures
(MTBF) can be difficult to translate to the software domain. However, the general
nature of the software may dictate special considerations to ensure "reliability." For
example, software for an air traffic control system or the space shuttle (both human-
rated systems) must not fail or human life may be lost. An inventory control system
or word-processor software should not fail, but the impact of failure is considerably
less dramatic. Although it may not be possible to quantify software reliability as pre-
cisely as we would like in the statement of scope, we can use the nature of the proj-
ect to aid in formulating estimates of effort and cost to assure reliability.

If a System Specification (see Chapter 10) has been properly developed, nearly all
information required for a description of software scope is available and documented
before software project planning begins. In cases where a specification has not been
developed, the planner must take on the role of system analyst to determine attrib-
utes and bounds that will influence estimation tasks.

RESOURCES

The second software planning task is estimation of the resources required to accom-
plish the software development effort. Figure 5.2 illustrates development resources
as a pyramid. The development environment—hardware and software tools—sits at
the foundation of the resources pyramid and provides the infrastructure to support
the development effort. At a higher level, we encounter reusable software compo-
nents—software building blocks that can dramatically reduce development costs and
accelerate delivery. At the top of the pyramid is the primary resource—people. Each
resource is specified with four characteristics: description of the resource, a state-
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Hardware/software tools

ment of availability, time when the resource will be required; duration of time that
resource will be applied. The last two characteristics can be viewed as a time win-
dow. Availability of the resource for a specified window must be established at the
earliest practical time.

5.4.1

The planner begins by evaluating scope and selecting the skills required to complete
development. Both organizational position (e.g., manager, senior software engineer)
and specialty (e.g., telecommunications, database, client/server) are specified. For
relatively small projects (one person-year or less), a single individual may perform
all software engineering tasks, consulting with specialists as required.

The number of people required for a software project can be determined only after
an estimate of development effort (e.g., person-months) is made. Techniques for esti-
mating effort are discussed later in this chapter.

Human Resources

5.4.2 Reusable Software Resources

Component-based software engineering (CBSE)® emphasizes reusability—that is, the
creation and reuse of software building blocks [HOO91]. Such building blocks, often
called components, must be cataloged for easy reference, standardized for easy appli-
cation, and validated for easy integration.

Bennatan [BEN92] suggests four software resource categories that should be con-
sidered as planning proceeds:

Off-the-shelf components. Existing software that can be acquired from a
third party or that has been developed internally for a past project. COTS
(commercial off-the-shelf) components are purchased from a third party, are
ready for use on the current project, and have been fully validated.
Full-experience components. Existing specifications, designs, code, or
test data developed for past projects that are similar to the software to be

5 Component-based software engineering is considered in detail in Chapter 27.
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built for the current project. Members of the current software team have had
full experience in the application area represented by these components.
Therefore, modifications required for full-experience components will be rel-
atively low-risk.

Partial-experience components. Existing specifications, designs, code, or
test data developed for past projects that are related to the software to be
built for the current project but will require substantial modification. Mem-
bers of the current software team have only limited experience in the appli-
cation area represented by these components. Therefore, modifications
required for partial-experience components have a fair degree of risk.

New components. Software components that must be built by the soft-
ware team specifically for the needs of the current project.

The following guidelines should be considered by the software planner when
reusable components are specified as a resource:

1.

If off-the-shelf components meet project requirements, acquire them. The
cost for acquisition and integration of off-the-shelf components will almost
always be less than the cost to develop equivalent software.6 In addition, risk
is relatively low.

If full-experience components are available, the risks associated with modifi-
cation and integration are generally acceptable. The project plan should
reflect the use of these components.

If partial-experience components are available, their use for the current proj-
ect must be analyzed. If extensive modification is required before the compo-
nents can be properly integrated with other elements of the software,
proceed carefully—risk is high. The cost to modify partial-experience compo-
nents can sometimes be greater than the cost to develop new components.

Ironically, reusable software components are often neglected during planning, only
to become a paramount concern during the development phase of the software
process. It is better to specify software resource requirements early. In this way tech-
nical evaluation of the alternatives can be conducted and timely acquisition can occur.

5.4.3 Environmental Resources

The environment that supports the software project, often called the software engi-

neering environment (SEE), incorporates hardware and software. Hardware provides

a platform that supports the tools (software) required to produce the work products
that are an outcome of good software engineering practice.” Because most software

6 When existing software components are used during a project, the overall cost reduction can be

dramatic. In fact, industry data indicate that cost, time to market, and the number of defects
delivered to the field all are reduced.

7 Other hardware—the target environment—is the computer on which the software will execute
when it has been released to the end-user.
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organizations have multiple constituencies that require access to the SEE, a project
planner must prescribe the time window required for hardware and software and
verify that these resources will be available.

When a computer-based system (incorporating specialized hardware and software)
is to be engineered, the software team may require access to hardware elements being
developed by other engineering teams. For example, software for a numerical con-
trol (NC) used on a class of machine tools may require a specific machine tool (e.g.,
an NC lathe) as part of the validation test step; a software project for advanced page-
layout may need a digital-typesetting system at some point during development. Each
hardware element must be specified by the software project planner.

SOFTWARE PROJECT ESTIMATION

In the early days of computing, software costs constituted a small percentage of the
overall computer-based system cost. An order of magnitude error in estimates of
software cost had relatively little impact. Today, software is the most expensive ele-
ment of virtually all computer-based systems. For complex, custom systems, a large
cost estimation error can make the difference between profit and loss. Cost overrun
can be disastrous for the developer.

Software cost and effort estimation will never be an exact science. Too many vari-
ables—human, technical, environmental, political—can affect the ultimate cost of
software and effort applied to develop it. However, software project estimation can
be transformed from a black art to a series of systematic steps that provide estimates
with acceptable risk.

To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve
100% accurate estimates after the project is completer).

Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and
effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates
must be provided "up front." However, we should recognize that the longer we wait,
the more we know, and the more we know, the less likely we are to make serious
errors in our estimates.

The second option can work reasonably well, if the current project is quite simi-
lar to past efforts and other project influences (e.g., the customer, business condi-
tions, the SEE, deadlines) are equivalent. Unfortunately, past experience has not
always been a good indicator of future results.

The remaining options are viable approaches to software project estimation. Ide-
ally, the techniques noted for each option should be applied in tandem; each used as
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a cross-check for the other. Decomposition techniques take a "divide and conquer”
approach to software project estimation. By decomposing a project into major func-
tions and related software engineering activities, cost and effort estimation can be
performed in a stepwise fashion. Empirical estimation models can be used to com-
plement decomposition techniques and offer a potentially valuable estimation
approach in their own right. A model is based on experience (historical data) and
takes the form

d=f(vy)

where d is one of a number of estimated values (e.g., effort, cost, project duration)
and v; are selected independent parameters (e.g., estimated LOC or FP).

Automated estimation tools implement one or more decomposition techniques or
empirical models. When combined with a graphical user interface, automated tools
provide an attractive option for estimating. In such systems, the characteristics of the
development organization (e.g., experience, environment) and the software to be
developed are described. Cost and effort estimates are derived from these data.

Each of the viable software cost estimation options is only as good as the histor-
ical data used to seed the estimate. If no historical data exist, costing rests on a very
shaky foundation. In Chapter 4, we examined the characteristics of some of the soft-
ware metrics that provide the basis for historical estimation data.

DECOMPOSITION TECHNIQUES

Software project estimation is a form of problem solving, and in most cases, the
problem to be solved (i.e., developing a cost and effort estimate for a software proj-
ect) is too complex to be considered in one piece. For this reason, we decompose
the problem, recharacterizing it as a set of smaller (and hopefully, more manage-
able) problems.

In Chapter 3, the decomposition approach was discussed from two different points
of view: decomposition of the problem and decomposition of the process. Estima-
tion uses one or both forms of partitioning. But before an estimate can be made, the
project planner must understand the scope of the software to be built and generate
an estimate of its “size.”

5.6.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things: (1)
the degree to which the planner has properly estimated the size of the product to be
built; (2) the ability to translate the size estimate into human effort, calendar time,
and dollars (a function of the availability of reliable software metrics from past proj-
ects); (3) the degree to which the project plan reflects the abilities of the software
team; and (4) the stability of product requirements and the environment that sup-
ports the software engineering effort.
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In this section, we consider the software sizing problem. Because a project esti-
mate is only as good as the estimate of the size of the work to be accomplished, siz-
ing represents the project planner’s first major challenge. In the context of project
planning, size refers to a quantifiable outcome of the software project. If a direct
approach is taken, size can be measured in LOC. If an indirect approach is chosen,
size is represented as FP.

Putnam and Myers [PUT92] suggest four different approaches to the sizing problem:

“Fuzzy logic” sizing. This approach uses the approximate reasoning tech-
niques that are the cornerstone of fuzzy logic. To apply this approach, the
planner must identify the type of application, establish its magnitude on a
qualitative scale, and then refine the magnitude within the original range.
Although personal experience can be used, the planner should also have
access to a historical database of projects® so that estimates can be com-
pared to actual experience.

Function point sizing. The planner develops estimates of the information
domain characteristics discussed in Chapter 4.

Standard component sizing. Software is composed of a number of differ-
ent “standard components” that are generic to a particular application area.
For example, the standard components for an information system are subsys-
tems, modules, screens, reports, interactive programs, batch programs, files,
LOC, and object-level instructions. The project planner estimates the number
of occurrences of each standard component and then uses historical project
data to determine the delivered size per standard component. To illustrate,
consider an information systems application. The planner estimates that 18
reports will be generated. Historical data indicates that 967 lines of COBOL
[PUT92] are required per report. This enables the planner to estimate that
17,000 LOC will be required for the reports component. Similar estimates and
computation are made for other standard components, and a combined size
value (adjusted statistically) results.

Change sizing. This approach is used when a project encompasses the use
of existing software that must be modified in some way as part of a project.
The planner estimates the number and type (e.g., reuse, adding code, chang-
ing code, deleting code) of modifications that must be accomplished. Using
an “effort ratio” [PUT92] for each type of change, the size of the change may
be estimated.

Putnam and Myers suggest that the results of each of these sizing approaches be
combined statistically to create a three-point or expected value estimate. This is accom-
plished by developing optimistic (low), most likely, and pessimistic (high) values for
size and combining them using Equations (5-1) described in the next section.

8 See Section 5.9 for a discussion of estimating tools that make use of a historical database and the
other sizing techniques discussed in this section..
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5.6.2 Problem-Based Estimation

In Chapter 4, lines of code and function points were described as measures from
which productivity metrics can be computed. LOC and FP data are used in two
ways during software project estimation: (1) as an estimation variable to "size"
each element of the software and (2) as baseline metrics collected from past proj-
ects and used in conjunction with estimation variables to develop cost and effort
projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a num-
ber of characteristics in common. The project planner begins with a bounded state-
ment of software scope and from this statement attempts to decompose software
into problem functions that can each be estimated individually. LOC or FP (the esti-
mation variable) is then estimated for each function. Alternatively, the planner may
choose another component for sizing such as classes or objects, changes, or busi-
ness processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm?) are then applied to the
appropriate estimation variable, and cost or effort for the function is derived. Func-
tion estimates are combined to produce an overall estimate for the entire project.

It is important to note, however, that there is often substantial scatter in produc-
tivity metrics for an organization, making the use of a single baseline productivity
metric suspect. In general, LOC/pm or FP/pm averages should be computed by proj-
ect domain. That is, projects should be grouped by team size, application area, com-
plexity, and other relevant parameters. Local domain averages should then be
computed. When a new project is estimated, it should first be allocated to a domain,
and then the appropriate domain average for productivity should be used in gener-
ating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for
decomposition and the target of the partitioning. When LOC is used as the estima-
tion variable, decomposition!0 is absolutely essential and is often taken to consider-
able levels of detail. The following decomposition approach has been adapted from
Phillips [PHI98]:!!

define product scope:

identify functions by decomposing scope:

do while functions remain

select a function;
assign all functions to subfunctions list;

9 The acronym pm stands for person-month.
10 In general, problem functions are decomposed. However, a list of standard components (Section
5.6.1) may be used instead.
11 The informal process design language noted here is intended to illustrate the general approach
for sizing. It does not consider every logical contingency.
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do while subfunctions remain

select subfunction),

if subfunction), resembles subfunctiony described in a historical data base

then note historical cost, effort, size (LOC or FP) data for subfunctiongy;
adjust historical cost, effort, size data based on any differences;
use adjusted cost, effort, size data to derive partial estimate, E,,;
project estimate = sum of {E};

else if cost, effort, size (LOC or FP) for subfunction can be estimated
then derive partial estimate, E,:
project estimate = sum of {EP}:
else subdivide subfunction) into smaller subfunctions:
add these to subfunctions list;
endif

endif

enddo

enddo

This decomposition approach assumes that all functions can be decomposed
into subfunctions that will resemble entries in a historical data base. If this is
not the case, then another sizing approach must be applied. The greater the
degree of partitioning, the more likely reasonably accurate estimates of LOC can
be developed.

For FP estimates, decomposition works differently. Rather than focusing on
function, each of the information domain characteristics—inputs, outputs, data
files, inquiries, and external interfaces—as well as the 14 complexity adjustment
values discussed in Chapter 4 are estimated. The resultant estimates can then be
used to derive a FP value that can be tied to past data and used to generate an
estimate.

Regardless of the estimation variable that is used, the project planner begins by
estimating a range of values for each function or information domain value. Using
historical data or (when all else fails) intuition, the planner estimates an optimistic,
most likely, and pessimistic size value for each function or count for each informa-
tion domain value. An implicit indication of the degree of uncertainty is provided
when a range of values is specified.

A three-point or expected value can then be computed. The expected value for the
estimation variable (size), S, can be computed as a weighted average of the optimistic
(Sopt), most likely (sp,), and pessimistic (spess) €stimates. For example,

S = (Sopt + 45m + Spess)/6 (56-1)

gives heaviest credence to the “most likely” estimate and follows a beta probability
distribution. We assume that there is a very small probability the actual size result
will fall outside the optimistic or pessimistic values.



128

GDVICE‘

Many modem
applications reside on
a network or are part
of a client/server
architecture. Therefore,
be sure that your
estimates include the
effort required for the
development of
“infrastructure”
soffware.

PART TWO MANAGING SOFTWARE PROJECTS

Once the expected value for the estimation variable has been determined, histor-
ical LOC or FP productivity data are applied. Are the estimates correct? The only rea-
sonable answer to this question is: "We can't be sure." Any estimation technique, no
matter how sophisticated, must be cross-checked with another approach. Even then,
common sense and experience must prevail.

5.6.3 An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, let us consider
a software package to be developed for a computer-aided design application for
mechanical components. A review of the System Specification indicates that the soft-
ware is to execute on an engineering workstation and must interface with various
computer graphics peripherals including a mouse, digitizer, high resolution color dis-
play and laser printer.

Using the System Specification as a guide, a preliminary statement of software scope
can be developed:

The CAD software will accept two- and three-dimensional geometric data from an
engineer. The engineer will interact and control the CAD system through a user interface
that will exhibit characteristics of good human/machine interface design. All geometric
data and other supporting information will be maintained in a CAD database. Design analy-
sis modules will be developed to produce the required output, which will be displayed on
a variety of graphics devices. The software will be designed to control and interact with
peripheral devices that include a mouse, digitizer, laser printer, and plotter.

This statement of scope is preliminary—it is not bounded. Every sentence would have
to be expanded to provide concrete detail and quantitative bounding. For example,
before estimation can begin the planner must determine what "characteristics of good
human/machine interface design" means or what the size and sophistication of the
"CAD database" are to be.

For our purposes, we assume that further refinement has occurred and that the
following major software functions are identified:

e User interface and control facilities (UICF)

e Two-dimensional geometric analysis (2DGA)

¢ Three-dimensional geometric analysis (3DGA)

e Database management (DBM)

e Computer graphics display facilities (CGDF)

e Peripheral control function (PCF)

¢ Design analysis modules (DAM)
Following the decomposition technique for LOC, an estimation table, shown in Fig-
ure 5.3, is developed. A range of LOC estimates is developed for each function. For

example, the range of LOC estimates for the 3D geometric analysis function is opti-
mistic—4600 LOC, most likely—6900 LOC, and pessimistic—8600 LOC.
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Function Estimated LOC
User interface and control facilities (UICF) 2,300
Two-dimensional geometric analysis (2DGA) 5,300
Three-dimensional geometric analysis (3DGA) 6,800
Database management (DBM) 3,350
Computer graphics display facilities (CGDF) 4,950
Peripheral control function (PCF) 2,100
Design analysis modules (DAM) 8,400
Estimated lines of code 33,200

Applying Equation (5-1), the expected value for the 3D geometric analysis function is 6800
LOC. Other estimates are derived in a similar fashion. By summing vertically in the esti-
mated LOC column, an estimate of 33,200 lines of code is established for the CAD system.

A review of historical data indicates that the organizational average productivity
for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8000 per
month, the cost per line of code is approximately $13. Based on the LOC estimate
and the historical productivity data, the total estimated project cost is $431,000 and
the estimated effort is 54 person-months.12

5.6.4 An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values rather
than software functions. Referring to the function point calculation table presented in
Figure 5.4, the project planner estimates inputs, outputs, inquiries, files, and external
interfaces for the CAD software. For the purposes of this estimate, the complexity weight-
ing factor is assumed to be average. Figure 5.4 presents the results of this estimate.

Information domain value Opt. Likely Pess. ci:::ll‘ Weight c::nt
Number of inputs 20 24 30 24 4 97
Number of outputs 12 15 22 16 5 78
Number of inquiries 16 22 28 22 5 88
Number of files 4 4 5 4 10 42
Number of external interfaces 2 2 3 2 7 15
Count total 320

12 Estimates are rounded-off to the nearest $1,000 and person-month. Arithmetic precision to the
nearest dollar or tenth of a month is unrealistic.
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Each of the complexity weighting factors is estimated and the complexity adjust-
ment factor is computed as described in Chapter 4:

Factor Valve
Backup and recovery 4
Data communications

Distributed processing

Performance critical

Existing operating environment
On-line data entry

Input transaction over multiple screens
Master files updated on-line
Information domain values complex
Internal processing complex

Code designed for reuse
Conversion/installation in design
Multiple installations

Application designed for change
Complexity adjustment factor

—
N oW s oW W ON

Finally, the estimated number of FP is derived:

FPestimated = count-total x [0.65 + 0.01 x 3 (F))]
FPestimated = 375

The organizational average productivity for systems of this type is 6.5 FP/pm. Based
on a burdened labor rate of $8000 per month, the cost per FP is approximately $1230.
Based on the LOC estimate and the historical productivity data, the total estimated
project cost is $461,000 and the estimated effort is 58 person-months.

5.6.4 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the
process that will be used. That is, the process is decomposed into a relatively small
set of tasks and the effort required to accomplish each task is estimated.

Like the problem-based techniques, process-based estimation begins with a delin-
eation of software functions obtained from the project scope. A series of software
process activities must be performed for each function. Functions and related soft-
ware process activities may be represented as part of a table similar to the one pre-
sented in Figure 3.2.

Once problem functions and process activities are melded, the planner estimates
the effort (e.g., person-months) that will be required to accomplish each software process
activity for each software function. These data constitute the central matrix of the table
in Figure 3.2. Average labor rates (i.e., cost/unit effort) are then applied to the effort
estimated for each process activity. It is very likely the labor rate will vary for each task.
Senior staff heavily involved in early activities are generally more expensive than junior
staff involved in later design tasks, code generation, and early testing.
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Activity ccC Planning un|:|s)ll(sis Engineering Co::lt;:::on CE |Totals
Task — Analysis | Design | Code Test
Function
Y
UICF 0.50 2.50 | 0.40 | 5.00 | n/a| 8.40
2DGA 0.75 4.00 | 0.60 | 2.00 [ n/a| 7.35
3DGA 0.50 | 4.00| 1.00 | 3.00 | n/a| 8.50
CGDF 0.50 3.00| 1.00 | 1.50 | n/a| 6.00
DBM 0.50 3.00| 0.75 | 1.50 | n/a| 5.75
PCF 0.25 2.00 | 0.50 | 1.50 | n/a| 4.25
DAM 0.50 2.00 | 0.50 | 2.00 | n/a] 5.00
Totals 0.25 0.25 0.25 3.50 [ 20.50 | 4.50 [16.50 46.00
% effort

CC = customer communication CE = customer evaluation

Costs and effort for each function and software process activity are computed as
the last step. If process-based estimation is performed independently of LOC or FP
estimation, we now have two or three estimates for cost and effort that may be com-
pared and reconciled. If both sets of estimates show reasonable agreement, there is
good reason to believe that the estimates are reliable. If, on the other hand, the results
of these decomposition techniques show little agreement, further investigation and
analysis must be conducted.

5.6.5 An Example of Process-Based Estimation

To illustrate the use of process-based estimation, we again consider the CAD soft-
ware introduced in Section 5.6.3. The system configuration and all software func-
tions remain unchanged and are indicated by project scope.

Referring to the completed process-based table shown in Figure 5.5, estimates of
effort (in person-months) for each software engineering activity are provided for each
CAD software function (abbreviated for brevity). The engineering and construction
release activities are subdivided into the major software engineering tasks shown.
Gross estimates of effort are provided for customer communication, planning, and
risk analysis. These are noted in the total row at the bottom of the table. Horizontal
and vertical totals provide an indication of estimated effort required for analysis,
design, code, and test. It should be noted that 53 percent of all effort is expended on
front-end engineering tasks (requirements analysis and design), indicating the rela-
tive importance of this work.

Based on an average burdened labor rate of $8,000 per month, the total estimated
project cost is $368,000 and the estimated effort is 46 person-months. If desired, labor
rates could be associated with each software process activity or software engineer-
ing task and computed separately.
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Total estimated effort for the CAD software range from a low of 46 person-months
(derived using a process-based estimation approach) to a high of 58 person-months
(derived using an FP estimation approach). The average estimate (using all three
approaches) is 53 person-months. The maximum variation from the average esti-
mate is approximately 13 percent.

What happens when agreement between estimates is poor? The answer to this
question requires a re-evaluation of information used to make the estimates. Widely
divergent estimates can often be traced to one of two causes:

1. The scope of the project is not adequately understood or has been misinter-
preted by the planner.

2. Productivity data used for problem-based estimation techniques is inappro-
priate for the application, obsolete (in that it no longer accurately reflects the
software engineering organization), or has been misapplied.

The planner must determine the cause of divergence and then reconcile the estimates.

EMPIRICAL ESTIMATION MODELS

An estimation model for computer software uses empirically derived formulas to pre-
dict effort as a function of LOC or FP. Values for LOC or FP are estimated using the
approach described in Sections 5.6.2 and 5.6.3. But instead of using the tables described
in those sections, the resultant values for LOC or FP are plugged into the estimation
model.

The empirical data that support most estimation models are derived from a lim-
ited sample of projects. For this reason, no estimation model is appropriate for all
classes of software and in all development environments. Therefore, the results
obtained from such models must be used judiciously.!3

5.7.1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from
past software projects. The overall structure of such models takes the form [MAT94]

E=A+B x (evC (6-2)

where A, B, and C are empirically derived constants, E is effort in person-months, and
ev is the estimation variable (either LOC or FP). In addition to the relationship noted
in Equation (5-2), the majority of estimation models have some form of project adjust-

13 In general, an estimation model should be calibrated for local conditions. The model should be
run using the results of completed projects. Data predicted by the model should be compared to
actual results and the efficacy of the model (for local conditions) should be assessed. If agreement
is not good, model coefficients and exponents must be recomputed using local data.
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ment component that enables E to be adjusted by other project characteristics (e.g.,
problem complexity, staff experience, development environment). Among the many
LOC-oriented estimation models proposed in the literature are

E =5.2 x (KLOC)091 Walston-Felix model
E=55+0.73 x (KLOC)!.16 Bailey-Basili model

E = 3.2 x (KLOC)1.05 Boehm simple model

E =5.288 x (KLOC)1.047 Doty model for KLOC > 9

FP-oriented models have also been proposed. These include

E=-13.39 + 0.0545 FP Albrecht and Gaffney model
E=60.62x7.728 x 10-8 FP3 Kemerer model
E=585.7+15.12 FP Matson, Barnett, and Mellichamp model

A quick examination of these models indicates that each will yield a different result!4
for the same values of LOC or FP. The implication is clear. Estimation models must
be calibrated for local needs!

5.7.2 The COCOMO Model

In his classic book on “software engineering economics,” Barry Boehm [BOE81] intro-
duced a hierarchy of software estimation models bearing the name COCOMO, for
COnstructive COst MOdel. The original COCOMO model became one of the most widely
used and discussed software cost estimation models in the industry. It has evolved
into a more comprehensive estimation model, called COCOMO II [BOE96, BOEOO].
Like its predecessor, COCOMO II is actually a hierarchy of estimation models that
address the following areas:

Application composition model. Used during the early stages of software
engineering, when prototyping of user interfaces, consideration of software
and system interaction, assessment of performance, and evaluation of tech-
nology maturity are paramount.

Early design stage model. Used once requirements have been stabilized
and basic software architecture has been established.
Post-architecture-stage model. Used during the construction of the
software.

Like all estimation models for software, the COCOMO II models require sizing infor-
mation. Three different sizing options are available as part of the model hierarchy:
object points, function points, and lines of source code.

The COCOMO II application composition model uses object points and is
illustrated in the following paragraphs. It should be noted that other, more

14 Part of the reason is that these models are often derived from relatively small populations of proj-

ects in only a few application domains.
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TABLE 5.1 Complexity weight
Complexity Object type P Y J
weighting for Simple Medium Difficult
object types
[BOE96] Screen 1 2 3
Report 2 5 8
3GL component
sophisticated estimation models (using FP and KLOC) are also available as part of
COCOMO 1I.
Like function points (Chapter 4), the object point is an indirect software measure
What is an that is computed using counts of the number of (1) screens (at the user interface), (2)
'_ ,',':bie“ reports, and (3) components likely to be required to build the application. Each object
point™: instance (e.g., a screen or report) is classified into one of three complexity levels (i.e.,
simple, medium, or difficult) using criteria suggested by Bochm [BOE96]. In essence,
complexity is a function of the number and source of the client and server data tables
that are required to generate the screen or report and the number of views or sec-
tions presented as part of the screen or report.

Once complexity is determined, the number of screens, reports, and components
are weighted according to Table 5.1. The object point count is then determined by
multiplying the original number of object instances by the weighting factor in Table
5.1 and summing to obtain a total object point count. When component-based devel-
opment or general software reuse is to be applied, the percent of reuse (%reuse) is
estimated and the object point count is adjusted:

NOP = (object points) x [(100 — %reuse)/100]
where NOP is defined as new object points.

To derive an estimate of effort based on the computed NOP value, a “productivity
rate” must be derived. Table 5.2 presents the productivity rate

TABLE 5.2 PROD = NOP/person-month

Productivity

rates for object

points [BOE?6]
Developer's experience/capability \llsv’;/ Low Nominal High X;?]’
Environment maturity/capability Y;B’ Low Nomindl High \}:iegrz
PROD 4 7 13 25 50
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for different levels of developer experience and development environment maturity.
Once the productivity rate has been determined, an estimate of project effort can be
derived as

estimated effort = NOP/PROD

In more advanced COCOMO II models, !5 a variety of scale factors, cost drivers,
and adjustment procedures are required. A complete discussion of these is beyond
the scope of this book. The interested reader should see [BOEOQ] or visit the COCOMO
1l Web site.

5.7.3 The Software Equation

The software equation [PUT92] is a dynamic multivariable model that assumes a spe-
cific distribution of effort over the life of a software development project. The model
has been derived from productivity data collected for over 4000 contemporary soft-
ware projects. Based on these data, an estimation model of the form

E = [LOC x B0-333/P|3 x (1/t4) (5-3)

where E= effort in person-months or person-years
t= project duration in months or years
B = “special skills factor”16
P = “productivity parameter” that reflects:

e Overall process maturity and management practices

¢ The extent to which good software engineering practices are used
e The level of programming languages used

e The state of the software environment

e The skills and experience of the software team

e The complexity of the application

Typical values might be P = 2,000 for development of real-time embedded software;
P =10,000 for telecommunication and systems software; P = 28,000 for business sys-
tems applications.!” The productivity parameter can be derived for local conditions
using historical data collected from past development efforts.

It is important to note that the software equation has two independent parame-
ters: (1) an estimate of size (in LOC) and (2) an indication of project duration in cal-
endar months or years.

15 As noted earlier, these models use FP and KLOC counts for the size variable.

16 Bincreases slowly as “the need for integration, testing, quality assurance, documentation, and
management skills grow [PUT92].” For small programs (KLOC = 5 to 15), B = 0.16. For programs
greater than 70 KLOC, B = 0.39.

17 It is important to note that the productivity parameter can be empirically derived from local proj-
ect data.
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To simplify the estimation process and use a more common form for their esti-
mation model, Putnam and Myers [PUT92] suggest a set of equations derived from
the software equation. Minimum development time is defined as

tmin = 8.14 (LOC/P)0-43 in months for t,,;, > 6 months (5-4a)
E =180 B3 in person-months for E > 20 person-months (5-4b)

Note that t in Equation (5-4b) is represented in years.
Using Equations (5-4) with P = 12,000 (the recommended value for scientific soft-
ware) for the CAD software discussed earlier in this chapter,

tnin = 8.14 (33200/12000)043
tmin = 12.6 calendar months
E =180 x 0.28 x (1.05)3

E = 58 person-months

The results of the software equation correspond favorably with the estimates devel-
oped in Section 5.6. Like the COCOMO model noted in the preceding section, the soft-
ware equation has evolved over the past decade. Further discussion of an extended
version of this estimation approach can be found in [PUT97b].

THE MAKE/BUY DECISION

In many software application areas, it is often more cost effective to acquire than
develop computer software. Software engineering managers are faced with a
make/buy decision that can be further complicated by a number of acquisition
options: (1) software may be purchased (or licensed) off-the-shelf, (2) “full-
experience” or “partial-experience” software components (see Section 5.4.2) may
be acquired and then modified and integrated to meet specific needs, or (3) soft-
ware may be custom built by an outside contractor to meet the purchaser's
specifications.

The steps involved in the acquisition of software are defined by the criticality of
the software to be purchased and the end cost. In some cases (e.g., low-cost PC soft-
ware), it is less expensive to purchase and experiment than to conduct a lengthy eval-
uation of potential software packages. For more expensive software products, the
following guidelines can be applied:

1. Develop specifications for function and performance of the desired soft-
ware. Define measurable characteristics whenever possible.

2. Estimate the internal cost to develop and the delivery date.

3a. Select three or four candidate applications that best meet your specifications.

3b. Select reusable software components that will assist in constructing the
required application.
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4. Develop a comparison matrix that presents a head-to-head comparison of key
functions. Alternatively, conduct benchmark tests to compare candidate software.

5. Evaluate each software package or component based on past product qual-
ity, vendor support, product direction, reputation, and the like.

6. Contact other users of the software and ask for opinions.

In the final analysis, the make/buy decision is made based on the following condi-
tions: (1) Will the delivery date of the software product be sooner than that for inter-
nally developed software? (2) Will the cost of acquisition plus the cost of customization
be less than the cost of developing the software internally? (3) Will the cost of out-
side support (e.g., a maintenance contract) be less than the cost of internal support?
These conditions apply for each of the acquisition options.

5.8.1 Creating a Decision Tree

? I:y:l:::u:lk The steps just described can be augmented using statistical techniques such as decision
way to sort tree analysis [BOE89]. For example, Figure 5.6 depicts a decision tree for a software-
;hr:ugh the inted based system, X. In this case, the software engineering organization can (1) build sys-
vz'mﬁ:smme tem X from scratch, (2) reuse existing “partial-experience” components to construct the
make /buy system, (3) buy an available software product and modify it to meet local needs, or
decision? (4) contract the software development to an outside vendor.

FIGURE 5.6 Simple (0.30)

A decision tree

to support the

J< e
Difficult (0.70) $450,000

make/buy
decision Build
Minor changes $275,000
(0.40)
5 X Reuse .
i
yeiem Simple (0.20) $310,000
Major
changes $490.000
(0.60) :
Complex (0.80)
Minor changes
(0.70) $210,000
$400,000
Maijor changes (0.30)
Without changes
(0.60) $350,000
$500,000

With changes (0.40)
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If the system is to be built from scratch, there is a 70 percent probability that the
job will be difficult. Using the estimation techniques discussed earlier in this chapter,
the project planner projects that a difficult development effort will cost $450,000. A
"simple" development effort is estimated to cost $380,000. The expected value for
cost, computed along any branch of the decision tree, is

expected cost = 3 (path probability); x (estimated path cost);
where 1 is the decision tree path. For the build path,
expected costyyijg = 0.30 ($380K) + 0.70 ($450K) = $429K

Following other paths of the decision tree, the projected costs for reuse, purchase
and contract, under a variety of circumstances, are also shown. The expected costs
for these paths are

expected COStyeyse = 0.40 ($275K) + 0.60 [0.20($310K) + 0.80($490K)] = $382K
expected COStpyy = 0.70($210K) + 0.30($400K)] = $267K
expected costeontract = 0.60($350K) + 0.40($500K)] = $410K

Based on the probability and projected costs that have been noted in Figure 5.6, the
lowest expected cost is the "buy" option.

It is important to note, however, that many criteria—not just cost— must be con-
sidered during the decision-making process. Availability, experience of the devel-
oper/vendor/contractor, conformance to requirements, local "politics," and the
likelihood of change are but a few of the criteria that may affect the ultimate deci-
sion to build, reuse, buy, or contract.

5.8.2 Outsourcing

Sooner or later, every company that develops computer software asks a fundamen-
tal question: “Is there a way that we can get the software and systems we need at a
lower price?” The answer to this question is not a simple one, and the emotional dis-
cussions that occur in response to the question always lead to a single word: out-
sourcing.

In concept, outsourcing is extremely simple. Software engineering activities are
contracted to a third party who does the work at lower cost and, hopefully, higher
quality. Software work conducted within a company is reduced to a contract man-
agement activity.

The decision to outsource can be either strategic or tactical. At the strategic level,
business managers consider whether a significant portion of all software work can
be contracted to others. At the tactical level, a project manager determines whether
part or all of a project can be best accomplished by subcontracting the software work.

Regardless of the breadth of focus, the outsourcing decision is often a financial
one. A detailed discussion of the financial analysis for outsourcing is beyond the
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scope of this book and is best left to others (e.g., [MIN95]). However, a brief review
of the pros and cons of the decision is worthwhile.

On the positive side, cost savings can usually be achieved by reducing the num-
ber of software people and the facilities (e.g., computers, infrastructure) that support
them. On the negative side, a company loses some control over the software that it
needs. Since software is a technology that differentiates its systems, services, and
products, a company runs the risk of putting the fate of its competitiveness into the
hands of a third party.

The trend toward outsourcing will undoubtedly continue. The only way to blunt
the trend is to recognize that software work is extremely competitive at all levels.
The only way to survive is to become as competitive as the outsourcing vendors them-
selves.

AUTOMATED ESTIMATION TOOLS

The decomposition techniques and empirical estimation models described in the pre-
ceding sections are available as part of a wide variety of software tools. These auto-
mated estimation tools allow the planner to estimate cost and effort and to perform
"what-if" analyses for important project variables such as delivery date or staffing.
Although many automated estimation tools exist, all exhibit the same general char-
acteristics and all perform the following six generic functions JON96]:

1. Sizing of project deliverables. The “size” of one or more software work
products is estimated. Work products include the external representation of
software (e.g., screen, reports), the software itself (e.g., KLOC), functionality
delivered (e.g., function points), descriptive information (e.g. documents).

2. Selecting project activities. The appropriate process framework (Chapter
2) is selected and the software engineering task set is specified.

3. Predicting staffing levels. The number of people who will be available to
do the work is specified. Because the relationship between people available
and work (predicted effort) is highly nonlinear, this is an important input.

4. Predicting software effort. Estimation tools use one or more models (e.g.,
Section 5.7) that relate the size of the project deliverables to the effort
required to produce them.

5. Predicting software cost. Given the results of step 4, costs can be com-
puted by allocating labor rates to the project activities noted in step 2.

6. Predicting software schedules. When effort, staffing level, and project
activities are known, a draft schedule can be produced by allocating labor
across software engineering activities based on recommended models for
effort distribution (Chapter 7).
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When different estimation tools are applied to the same project data, a relatively
large variation in estimated results is encountered. More important, predicted values
sometimes are significantly different than actual values. This reinforces the notion
that the output of estimation tools should be used as one "data point" from which
estimates are derived—not as the only source for an estimate.

SUMMARY

The software project planner must estimate three things before a project begins: how
long it will take, how much effort will be required, and how many people will be
involved. In addition, the planner must predict the resources (hardware and software)
that will be required and the risk involved.

The statement of scope helps the planner to develop estimates using one or more
techniques that fall into two broad categories: decomposition and empirical model-
ing. Decomposition techniques require a delineation of major software functions, fol-
lowed by estimates of either (1) the number of LOC, (2) selected values within the
information domain, (3) the number of person-months required to implement each
function, or (4) the number of person-months required for each software engineer-
ing activity. Empirical techniques use empirically derived expressions for effort and
time to predict these project quantities. Automated tools can be used to implement
a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just
noted. By comparing and reconciling estimates derived using different techniques,
the planner is more likely to derive an accurate estimate. Software project estima-
tion can never be an exact science, but a combination of good historical data and
systematic techniques can improve estimation accuracy.
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PROBLEMS AND POINTS TO PONDER

5.1. Assume that you are the project manager for a company that builds software
for consumer products. You have been contracted to build the software for a home
security system. Write a statement of scope that describes the software. Be sure your
statement of scope is bounded. If you're unfamiliar with home security systems, do
a bit of research before you begin writing. Alternate: Replace the home security sys-
tem with another problem that is of interest to you.

5.2. Software project complexity is discussed briefly in Section 5.1. Develop a list of
software characteristics (€.g., concurrent operation, graphical output) that affect the
complexity of a project. Prioritize the list.

5.3. Performance is an important consideration during planning. Discuss how per-
formance can be interpreted differently depending upon the software application
area.

5.4. Do a functional decomposition of the home security system software you
described in problem 5.1. Estimate the size of each function in LOC. Assuming that
your organization produces 450 LOC/pm with a burdened labor rate of $7000 per
person-month, estimate the effort and cost required to build the software using the
LOC-based estimation technique described in Section 5.6.3.

5.5. Using the 3D function point measure described in Chapter 4, compute the num-
ber of FP for the home security system software and derive effort and cost estimates
using the FP-based estimation technique described in Section 5.6.4.

5.6. Use the COCOMO Il model to estimate the effort required to build software for
a simple ATM that produces 12 screens, 10 reports, and will require approximately
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80 software components. Assume average complexity and average developer/envi-
ronment maturity. Use the application composition model with object points.

5.7. Use the software equation to estimate the home security system software.
Assume that Equations (5-4) are applicable and that P = 8000.

5.8. Compare the effort estimates derived in problems 5.4, 5.5, and 5.7. Develop a
single estimate for the project using a three-point estimate. What is the standard devi-
ation and how does it affect your degree of certainty about the estimate?

5.9. Using the results obtained in problem 5.8, determine whether it's reasonable to
expect that the software can be built within the next six months and how many peo-
ple would have to be used to get the job done.

5.10. Develop a spreadsheet model that implements one or more of the estimation
techniques described in this chapter. Alternatively, acquire one or more on-line mod-
els for estimation from Web-based sources.

5.11. For a project team, develop a software tool that implements each of the esti-
mation techniques developed in this chapter.

5.12. It seems odd that cost and schedule estimates are developed during software
project planning—before detailed software requirements analysis or design has been
conducted. Why do you think this is done? Are there circumstances when it should
not be done?

5.13. Recompute the expected values noted for the decision tree in Figure 5.6
assuming that every branch has a 50-50 probability. Would this change your final
decision?

FURTHER READINGS AND INFORMATION SOURCES

Most software project management books contain discussions of project estimation.
Jones (Estimating Software Costs, McGraw-Hill, 1998) has written the most compre-
hensive treatment of the subject published to date. His book contains models and
data that are applicable to software estimating in every application domain. Roet-
zheim and Beasley (Software Project Cost and Schedule Estimating: Best Practices, Pren-
tice-Hall, 1997) present many useful models and suggest step-by-step guidelines for
generating the best possible estimates.

Phillips [PHI98], Bennatan (On Time, Within Budget: Software Project Management
Practices and Techniques, Wiley, 1995), Whitten (Managing Software Development Proj-
ects: Formula for Success, Wiley, 1995), Wellman (Software Costing, Prentice-Hall, 1992),
and Londeix (Cost Estimation for Software Development, Addison-Wesley, 1987) con-
tain useful information on software project planning and estimation.

Putnam and Myer's detailed treatment of software cost estimating ([PUT92] and
[PUT97b]) and Boehm's books on software engineering economics ([BOE81] and
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COCOMO II [BOEO0O]) describe empirical estimation models. These books provide
detailed analysis of data derived from hundreds of software projects. An excellent
book by DeMarco (Controlling Software Projects, Yourdon Press, 1982) provides valu-
able insight into the management, measurement, and estimation of software proj-
ects. Sneed (Software Engineering Management, Wiley, 1989) and Macro (Software
Engineering: Concepts and Management, Prentice-Hall, 1990) consider software proj-
ect estimation in considerable detail.

Lines-of-code cost estimation is the most commonly used approach in the indus-
try. However, the impact of the object-oriented paradigm (see Part Four) may inval-
idate some estimation models. Lorenz and Kidd (Object-Oriented Software Metrics,
Prentice-Hall, 1994) and Cockburn (Surviving Object-Oriented Projects, Addison-
Wesley, 1998) consider estimation for object-oriented systems.

A wide variety of information sources on software planning and estimation is avail-
able on the Internet. An up-to-date list of World Wide Web references that are rele-
vant to software estimation can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/
project-plan.mhtml
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lems can plague a software project. A risk is a
potential problem—it might happen, it might not.
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idea to identify it, assess its probability of occur-
rence, estimate its impact, and establish a con-
tingency plan should the problem actually occur.
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process—managers, software engineers, ond cus-
tomers—participate in risk analysis and man-
agement.
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"Be prepared.” Software is a difficult undertaking.

sures to avoid or manage them—is a key element
of good software project management.
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QUICK a set of risk information sheets is the people, the product, the process, ond the proj-
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6.2

Peter Drucker [DRU75] once said, "While it is futile to try to eliminate risk, and
questionable to try to minimize it, it is essential that the risks taken be the right risks."
Before we can identify the "right risks" to be taken during a software project, it is
important to identify all risks that are obvious to both managers and practitioners.

REACTIVE VS. PROACTIVE RISK STRATEGIES

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk
management” [THO92]. In the movies that carried his name, Indiana Jones, when
faced with overwhelming difficulty, would invariably say, “Don’t worry, I'll think of
something!” Never worrying about problems until they happened, Indy would react
in some heroic way.

Sadly, the average software project manager is not Indiana Jones and the mem-
bers of the software project team are not his trusty sidekicks. Yet, the majority of
software teams rely solely on reactive risk strategies. At best, a reactive strategy
monitors the project for likely risks. Resources are set aside to deal with them,
should they become actual problems. More commonly, the software team does
nothing about risks until something goes wrong. Then, the team flies into action
in an attempt to correct the problem rapidly. This is often called a fire fighting mode.
When this fails, “crisis management” [CHA92] takes over and the project is in real
jeopardy.

A considerably more intelligent strategy for risk management is to be proactive.
A proactive strategy begins long before technical work is initiated. Potential risks are
identified, their probability and impact are assessed, and they are ranked by impor-
tance. Then, the software team establishes a plan for managing risk. The primary
objective is to avoid risk, but because not all risks can be avoided, the team works
to develop a contingency plan that will enable it to respond in a controlled and effec-
tive manner. Throughout the remainder of this chapter, we discuss a proactive strat-
egy for risk management.

SOFTWARE RISKS

Although there has been considerable debate about the proper definition for software
risk, there is general agreement that risk always involves two characteristics [HIG95]:
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e Uncertainty—the risk may or may not happen; that is, there are no 100% prob-
able risks.!

e Loss—if the risk becomes a reality, unwanted consequences or losses will
occur.

When risks are analyzed, it is important to quantify the level of uncertainty and the
degree of loss associated with each risk. To accomplish this, different categories of
risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is
likely that project schedule will slip and that costs will increase. Project risks identify
potential budgetary, schedule, personnel (staffing and organization), resource, cus-
tomer, and requirements problems and their impact on a software project. In Chap-
ter 5, project complexity, size, and the degree of structural uncertainty were also
defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.
If a technical risk becomes a reality, implementation may become difficult or impos-
sible. Technical risks identify potential design, implementation, interface, verifica-
tion, and maintenance problems. In addition, specification ambiguity, technical
uncertainty, technical obsolescence, and "leading-edge" technology are also risk fac-
tors. Technical risks occur because the problem is harder to solve than we thought
it would be.

Business risks threaten the viability of the software to be built. Business risks often
jeopardize the project or the product. Candidates for the top five business risks are
(1) building a excellent product or system that no one really wants (market risk), (2)
building a product that no longer fits into the overall business strategy for the com-
pany (strategic risk), (3) building a product that the sales force doesn't understand
how to sell, (4) losing the support of senior management due to a change in focus or
a change in people (management risk), and (5) losing budgetary or personnel com-
mitment (budget risks). It is extremely important to note that simple categorization
won't always work. Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette [CHA89].
Known risks are those that can be uncovered after careful evaluation of the project
plan, the business and technical environment in which the project is being devel-
oped, and other reliable information sources (e.g., unrealistic delivery date, lack of
documented requirements or software scope, poor development environment). Pre-
dictable risks are extrapolated from past project experience (e.g., staff turnover, poor
communication with the customer, dilution of staff effort as ongoing maintenance
requests are serviced). Unpredictable risks are the joker in the deck. They can and do
occur, but they are extremely difficult to identify in advance.

1 Arisk that is 100 percent probable is a constraint on the software project.
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RISK IDENTIFICATION

RIsk identification is a systematic attempt to specify threats to the project plan (esti-
mates, schedule, resource loading, etc.). By identifying known and predictable risks,
the project manager takes a first step toward avoiding them when possible and con-
trolling them when necessary.

There are two distinct types of risks for each of the categories that have been pre-
sented in Section 6.2: generic risks and product-specific risks. Generic risks are a
potential threat to every software project. Product-specific risks can be identified only
by those with a clear understanding of the technology, the people, and the environ-
ment that is specific to the project at hand. To identify product-specific risks, the proj-
ect plan and the software statement of scope are examined and an answer to the
following question is developed: "What special characteristics of this product may
threaten our project plan?"

One method for identifying risks is to create a risk item checklist. The checklist can
be used for risk identification and focuses on some subset of known and predictable
risks in the following generic subcategories:

e Product size—risks associated with the overall size of the software to be built
or modified.

e Business impact—risks associated with constraints imposed by management
or the marketplace.

e Customer characteristics—risks associated with the sophistication of the cus-
tomer and the developer's ability to communicate with the customer in a
timely manner.

e Process definition—risks associated with the degree to which the software
process has been defined and is followed by the development organiza-
tion.

¢ Development environment—risks associated with the availability and quality
of the tools to be used to build the product.

e Technology to be built—risks associated with the complexity of the system to
be built and the "newness" of the technology that is packaged by the system.

e Staff size and experience—risks associated with the overall technical and
project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each
of the topics can be answered for each software project. The answers to these ques-
tions allow the planner to estimate the impact of risk. A different risk item checklist
format simply lists characteristics that are relevant to each generic subcategory. Finally,
a set of “risk components and drivers" [AFC88] are listed along with their probability
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of occurrence. Drivers for performance, support, cost, and schedule are discussed in
answer to later questions.

A number of comprehensive checklists for software project risk have been pro-
posed in the literature (e.g., [SEI93], [KAR96]). These provide useful insight into generic
risks for software projects and should be used whenever risk analysis and manage-
ment is instituted. However, a relatively short list of questions [KEI98] can be used
to provide a preliminary indication of whether a project is “at risk.”

6.3.1 Assessing Overall Project Risk

The following questions have derived from risk data obtained by surveying experi-
enced software project managers in different part of the world [KEI98]. The questions
are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support
the project?

2. Are end-users enthusiastically committed to the project and the
system/product to be built?

3. Are requirements fully understood by the software engineering team and
their customers?

Have customers been involved fully in the definition of requirements?
Do end-users have realistic expectations?

Is project scope stable?

Does the software engineering team have the right mix of skills?

Are project requirements stable?

¥ ® N0

Does the project team have experience with the technology to be
implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project
and on the requirements for the system/product to be built?

If any one of these questions is answered negatively, mitigation, monitoring, and
management steps should be instituted without fail. The degree to which the proj-
ect is at risk is directly proportional to the number of negative responses to these
questions.

6.3.2 Risk Components and Drivers

The U.S. Air Force [AFC88] has written a pamphlet that contains excellent guidelines
for software risk identification and abatement. The Air Force approach requires that
the project manager identify the risk drivers that affect software risk components—
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performance, cost, support, and schedule. In the context of this discussion, the risk
components are defined in the following manner:

e Performance risk—the degree of uncertainty that the product will meet its
requirements and be fit for its intended use.

e Cost risk—the degree of uncertainty that the project budget will be
maintained.

e Support risk—the degree of uncertainty that the resultant software will be
easy to correct, adapt, and enhance.

e Schedule risk—the degree of uncertainty that the project schedule will be
maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact
categories—negligible, marginal, critical, or catastrophic. Referring to Figure 6.1 [BOE89],

Components
Performance Support Cost Schedule
Category
Failure to meet the requirement Failure results in increased costs
1 | would result in mission failure and schedule delays with expected
values in excess of $500K
Catastrophic Significant Nonresponsive or | Significant financial | Unachievable
degradation to unsupportable shortages, budget I0C
2 | nonachievement software overrun likely
of technical
performance
Failure to meet the requirement would Failure results in operational delays
1 | degrade system performance to a point | and/or increased costs with expected
where mission success is questionable value of $100K to $500K
Critical
Some reduction Minor delays in Some shortage of Possible
2 | in technical software financial resources, | slippage
performance modifications possible overruns in 10C

Failure to meet the r

equirement would

result in degradation of secondary

Costs, impacts, and/or recoverable

schedule slips with ex

of $1K to $100K

pected value

mission
Marginal Minimal to small Responsive Sufficient financial Realistic,
P
reduction in software resources achievable
2| technical support schedule
performance
Failure to meet the requirement would Error results in minor cost and/or
create inconvenience or nonoperational | schedule impact with expected value
impact of less than $1K
Negligible
99 No reduction in Easily supportable | Possible budget Early
2 | technical software underrun achievable

performance

Note: (1) The potential consequence of undetected software errors or faults.
(2) The potential consequence if the desired outcome is not achieved.

FIGURE 6.1 Impoact assessment [BOES?]

I0C
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a characterization of the potential consequences of errors (rows labeled 1) or a failure
to achieve a desired outcome (rows labeled 2) are described. The impact category is
chosen based on the characterization that best fits the description in the table.

RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the
likelihood or probability that the risk is real and the consequences of the problems asso-
ciated with the risk, should it occur. The project planner, along with other managers
and technical staff, performs four risk projection activities: (1) establish a scale that
reflects the perceived likelihood of a risk, (2) delineate the consequences of the risk, (3)
estimate the impact of the risk on the project and the product, and (4) note the overall
accuracy of the risk projection so that there will be no misunderstandings.

6.4.1 Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection.2
A sample risk table is illustrated in Figure 6.2.

Risks Category | Probability | Impact RMMM
Size estimate may be significantly low PS 60% 2
Larger number of users than planned PS 30% 3
Less reuse than planned PS 70% 2
End-users resist system BU 40% 3
Delivery deadline will be tightened BU 50% 2
Funding will be lost cu 40% 1
Customer will change requirements PS 80% 2
Technology will not meet expectations TE 30% 1
Lack of training on tools DE 80% 3
Staff inexperienced ST 30% 2
Staff turnover will be high ST 60% 2

Impact values:
1—catastrophic
2—critical
3—marginal
4—negligible

FIGURE 6.2 Sample risk table prior to sorting

2 The risk table should be implemented as a spreadsheet model. This enables easy manipulation
and sorting of the entries.
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A project team begins by listing all risks (no matter how remote) in the first col-
umn of the table. This can be accomplished with the help of the risk item check-
lists referenced in Section 6.3. Each risk is categorized in the second column (e.g.,
PS implies a project size risk, BU implies a business risk). The probability of occur-
rence of each risk is entered in the next column of the table. The probability value
for each risk can be estimated by team members individually. Individual team mem-
bers are polled in round-robin fashion until their assessment of risk probability
begins to converge.

Next, the impact of each risk is assessed. Each risk component is assessed using
the characterization presented in Figure 6.1, and an impact category is determined.
The categories for each of the four risk components—performance, support, cost, and
schedule—are averaged3 to determine an overall impact value.

Once the first four columns of the risk table have been completed, the table is
sorted by probability and by impact. High-probability, high-impact risks percolate to
the top of the table, and low-probability risks drop to the bottom. This accomplishes
first-order risk prioritization.

The project manager studies the resultant sorted table and defines a cutoff line.
The cutoff line (drawn horizontally at some point in the table) implies that only risks
that lie above the line will be given further attention. Risks that fall below the line are
re-evaluated to accomplish second-order prioritization. Referring to Figure 6.3, risk
impact and probability have a distinct influence on management concern. A risk fac-

3 A weighted average can be used if one risk component has more significance for the project.
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tor that has a high impact but a very low probability of occurrence should not absorb
a significant amount of management time. However, high-impact risks with moder-
ate to high probability and low-impact risks with high probability should be carried
forward into the risk analysis steps that follow.

All risks that lie above the cutoff line must be managed. The column labeled
RMMM contains a pointer into a Risk Mitigation, Monitoring and Management Plan
or alternatively, a collection of risk information sheets developed for all risks that
lie above the cutoff. The RMMM plan and risk information sheets are discussed in
Sections 6.5 and 6.6.

Risk probability can be determined by making individual estimates and then devel-
oping a single consensus value. Although that approach is workable, more sophisti-
cated techniques for determining risk probability have been developed [AFC88]. Risk
drivers can be assessed on a qualitative probability scale that has the following val-
ues: impossible, improbable, probable, and frequent. Mathematical probability can
then be associated with each qualitative value (e.g., a probability of 0.7 to 1.0 implies
a highly probable risk).

6.4.2 Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature,
its scope, and its timing. The nature of the risk indicates the problems that are likely
if it occurs. For example, a poorly defined external interface to customer hardware (a
technical risk) will preclude early design and testing and will likely lead to system
integration problems late in a project. The scope of a risk combines the severity (just
how serious is it?) with its overall distribution (how much of the project will be affected
or how many customers are harmed?). Finally, the timing of a risk considers when
and for how long the impact will be felt. In most cases, a project manager might want
the “bad news” to occur as soon as possible, but in some cases, the longer the delay,
the better.

Returning once more to the risk analysis approach proposed by the U.S. Air Force
[AFC88], the following steps are recommended to determine the overall consequences
of a risk:

1. Determine the average probability of occurrence value for each risk component.

2. Using Figure 6.1, determine the impact for each component based on the cri-
teria shown.

3. Complete the risk table and analyze the results as described in the preceding
sections.

The overall risk exposure, RE, is determined using the following relationship
[HAL98]:

RE=PxC
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where P is the probability of occurrence for a risk, and C is the the cost to the project
should the risk occur.

For example, assume that the software team defines a project risk in the follow-
ing manner:

Risk identification. Only 70 percent of the software components scheduled for reuse
will, in fact, be integrated into the application. The remaining functionality will have to
be custom developed.

Risk probability. 80% (likely).

Risk impact. 60 reusable software components were planned. If only 70 percent can be
used, 18 components would have to be developed from scratch (in addition to other cus-
tom software that has been scheduled for development). Since the average component is
100 LOC and local data indicate that the software engineering cost for each LOC is $14.00,
the overall cost (impact) to develop the components would be 18 x 100 x 14 = $25,200.
Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

Risk exposure can be computed for each risk in the risk table, once an estimate of
the cost of the risk is made. The total risk exposure for all risks (above the cutoff in
the risk table) can provide a means for adjusting the final cost estimate for a project.
It can also be used to predict the probable increase in staff resources required at var-
ious points during the project schedule.

The risk projection and analysis techniques described in Sections 6.4.1 and 6.4.2
are applied iteratively as the software project proceeds. The project team should revisit
the risk table at regular intervals, re-evaluating each risk to determine when new cir-
cumstances cause its probability and impact to change. As a consequence of this
activity, it may be necessary to add new risks to the table, remove some risks that are
no longer relevant, and change the relative positions of still others.

6.4.3 Risk Assessment

At this point in the risk management process, we have established a set of triplets of
the form [CHA89]:

[ I, x;]

where r; is risk, I; is the likelihood (probability) of the risk, and x; is the impact of the
risk. During risk assessment, we further examine the accuracy of the estimates that
were made during risk projection, attempt to rank the risks that have been uncov-
ered, and begin thinking about ways to control and/or avert risks that are likely to
occur.

For assessment to be useful, a risk referent level [CHA89] must be defined. For most
software projects, the risk components discussed earlier—performance, cost, sup-
port, and schedule—also represent risk referent levels. That is, there is a level for per-
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Referent point (cost value, time value)

Project termination will occur

Projected schedule overrun

Projected cost overrun

formance degradation, cost overrun, support difficulty, or schedule slippage (or any
combination of the four) that will cause the project to be terminated. If a combina-
tion of risks create problems that cause one or more of these referent levels to be
exceeded, work will stop. In the context of software risk analysis, a risk referent level
has a single point, called the referent point or break point, at which the decision to
proceed with the project or terminate it (problems are just too great) are equally
weighted. Figure 6.4 represents this situation graphically.

In reality, the referent level can rarely be represented as a smooth line on a graph.
In most cases it is a region in which there are areas of uncertainty; that is, attempt-
ing to predict a management decision based on the combination of referent values
is often impossible. Therefore, during risk assessment, we perform the following
steps:

Define the risk referent levels for the project.

2. Attempt to develop a relationship between each (r; [;, x;) and each of the ref-
erent levels.

3. Predict the set of referent points that define a region of termination, bounded
by a curve or areas of uncertainty.

4. Try to predict how compound combinations of risks will affect a referent
level.

A detailed discussion of risk referent level is best left to books that are dedicated to
risk analysis (e.g., [CHA89], [ROWS88]).
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RISK REFINEMENT

During early stages of project planning, a risk may be stated quite generally. As time
passes and more is learned about the project and the risk, it may be possible to refine
the risk into a set of more detailed risks, each somewhat easier to mitigate, monitor,
and manage.

One way to do this is to represent the risk in condition-transition-consequence (CTC)
format [GLU94]. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequences.
Using the CTC format for the reuse risk noted in Section 6.4.2, we can write:

Given that all reusable software components must conform to specific design standards
and that some do not conform, then there is concern that (possibly) only 70 percent of the
planned reusable modules may actually be integrated into the as-built system, resulting in
the need to custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no
knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified
and may not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language that
is not supported on the target environment.

The consequences associated with these refined subconditions remains the same (i.e.,
30 percent of software components must be customer engineered), but the refinement
helps to isolate the underlying risks and might lead to easier analysis and response.

RISK MITIGATION, MONITORING, AND MANAGEMENT

All of the risk analysis activities presented to this point have a single goal—to assist
the project team in developing a strategy for dealing with risk. An effective strategy
must consider three issues:

e risk avoidance

e risk monitoring

¢ risk management and contingency planning
If a software team adopts a proactive approach to risk, avoidance is always the best

strategy. This is achieved by developing a plan for risk mitigation. For example, assume
that high staff turnover is noted as a project risk, r;. Based on past history and man-
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agement intuition, the likelihood, /;, of high turnover is estimated to be 0.70 (70 per-
cent, rather high) and the impact, x;, is projected at level 2. That is, high turnover will
have a critical impact on project cost and schedule.

To mitigate this risk, project management must develop a strategy for reducing
turnover. Among the possible steps to be taken are

¢ Meet with current staff to determine causes for turnover (e.g., poor working
conditions, low pay, competitive job market).

¢ Mitigate those causes that are under our control before the project
starts.

¢ Once the project commences, assume turnover will occur and develop tech-
niques to ensure continuity when people leave.

¢ Organize project teams so that information about each development activity
is widely dispersed.

¢ Define documentation standards and establish mechanisms to be sure that
documents are developed in a timely manner.

¢ Conduct peer reviews of all work (so that more than one person is "up to speed”).

e Assign a backup staff member for every critical technologist.

As the project proceeds, risk monitoring activities commence. The project manager
monitors factors that may provide an indication of whether the risk is becoming
more or less likely. In the case of high staff turnover, the following factors can be
monitored:

¢ General attitude of team members based on project pressures.
e The degree to which the team has jelled.

¢ Interpersonal relationships among team members.

e Potential problems with compensation and benefits.

¢ The availability of jobs within the company and outside it.

In addition to monitoring these factors, the project manager should monitor the effec-
tiveness of risk mitigation steps. For example, a risk mitigation step noted here called
for the definition of documentation standards and mechanisms to be sure that doc-
uments are developed in a timely manner. This is one mechanism for ensuring con-
tinuity, should a critical individual leave the project. The project manager should
monitor documents carefully to ensure that each can stand on its own and that each
imparts information that would be necessary if a newcomer were forced to join the
software team somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation efforts have
failed and that the risk has become a reality. Continuing the example, the project is
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well underway and a number of people announce that they will be leaving. If the mit-
igation strategy has been followed, backup is available, information is documented,
and knowledge has been dispersed across the team. In addition, the project manager
may temporarily refocus resources (and readjust the project schedule) to those func-
tions that are fully staffed, enabling newcomers who must be added to the team to
“get up to speed.” Those individuals who are leaving are asked to stop all work and
spend their last weeks in “knowledge transfer mode.” This might include video-based
knowledge capture, the development of “commentary documents,” and/or meeting
with other team members who will remain on the project.

It is important to note that RMMM steps incur additional project cost. For exam-
ple, spending the time to "backup" every critical technologist costs money. Part of
risk management, therefore, is to evaluate when the benefits accrued by the RMMM
steps are outweighed by the costs associated with implementing them. In essence,
the project planner performs a classic cost/benefit analysis. If risk aversion steps for
high turnover will increase both project cost and duration by an estimated 15 per-
cent, but the predominant cost factor is "backup," management may decide not to
implement this step. On the other hand, if the risk aversion steps are projected to
increase costs by 5 percent and duration by only 3 percent management will likely
put all into place.

For a large project, 30 or 40 risks may identified. If between three and seven risk
management steps are identified for each, risk management may become a project
in itself! For this reason, we adapt the Pareto 80-20 rule to software risk. Experience
indicates that 80 percent of the overall project risk (i.e., 80 percent of the potential
for project failure) can be accounted for by only 20 percent of the identified risks. The
work performed during earlier risk analysis steps will help the planner to determine
which of the risks reside in that 20 percent (e.g., risks that lead to the highest risk
exposure). For this reason, some of the risks identified, assessed, and projected may
not make it into the RMMM plan—they don't fall into the critical 20 percent (the risks
with highest project priority).

SAFETY RISKS AND HAZARDS

Risk is not limited to the software project itself. Risks can occur after the software
has been successfully developed and delivered to the customer. These risks are typ-
ically associated with the consequences of software failure in the field.

In the early days of computing, there was reluctance to use computers (and soft-
ware) to control safety critical processes such as nuclear reactors, aircraft flight con-
trol, weapons systems, and large-scale industrial processes. Although the probability
of failure of a well-engineered system was small, an undetected fault in a computer-
based control or monitoring system could result in enormous economic damage or,
worse, significant human injury or loss of life. But the cost and functional benefits of
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computer-based control and monitoring far outweigh the risk. Today, computer hard-
ware and software are used regularly to control safety critical systems.

When software is used as part of a control system, complexity can increase by an
order of magnitude or more. Subtle design faults induced by human error—some-
thing that can be uncovered and eliminated in hardware-based conventional con-
trol—become much more difficult to uncover when software is used.

Software safety and hazard analysis [LEV95] are software quality assurance activ-
ities (Chapter 8) that focus on the identification and assessment of potential hazards
that may affect software negatively and cause an entire system to fail. If hazards can
be identified early in the software engineering process, software design features can
be specified that will either eliminate or control potential hazards.

6.8 THE RMMM PLAN

A risk management strategy can be included in the software project plan or the risk
management steps can be organized into a separate Risk Mitigation, Monitoring and
Management Plan. The RMMM plan documents all work performed as part of risk
analysis and is used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each risk
is documented individually using a risk information sheet (RIS) [WIL97]. In most cases,
the RIS is maintained using a database system, so that creation and information entry,
priority ordering, searches, and other analysis may be accomplished easily. The for-
mat of the RIS is illustrated in Figure 6.5.

Once RMMM has been documented and the project has begun, risk mitigation and
monitoring steps commence. As we have already discussed, risk mitigation is a prob-
lem avoidance activity. Risk monitoring is a project tracking activity with three pri-
mary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to ensure
that risk aversion steps defined for the risk are being properly applied; and (3) to col-
lect information that can be used for future risk analysis. In many cases, the prob-
lems that occur during a project can be traced to more than one risk. Another job of
risk monitoring is to attempt to allocate origin (what risk(s) caused which problems
throughout the project).

SUMMARY

Whenever a lot is riding on a software project, common sense dictates risk analy-
sis. And yet, most software project managers do it informally and superficially, if
they do it at all. The time spent identifying, analyzing, and managing risk pays itself
back in many ways: less upheaval during the project, a greater ability to track and
control a project, and the confidence that comes with planning for problems before
they occur.
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Risk information sheet

Risk ID: P02-4-32 Date: 5/9/02 Prob: 80% Impact: high

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be
infegrated into the application. The remaining functionality will have to be custom
developed.

Refinement/context:

Subcondition 1: Certain reusable components were developed by a third party
with no knowledge of internal design standards.

Subcondition 2: The design standard for component interfaces has not been
solidified and may not conform to certain existing reusable components.
Subcondition 3: Certain reusable components have been implemented in a
language that is not supported on the target environment.

Mitigation/monitoring:

1. Contact third party to determine conformance with design standards.

2. Press for interface standards completion; consider component structure when
deciding on interface protocol.

3. Check to determine number of components in subcondition 3 category; check
to determine if language support can be acquired.

Management/contingency plan/trigger:

RE computed to be $20,200. Allocate this amount within project contingency cost.
Develop revised schedule assuming that 18 additional components will have to be
custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive as of 7/1/02

Current status:
5/12/02: Mitigation steps initiated.

Originator:  D. Gagne Assigned:  B. Laster

Risk analysis can absorb a significant amount of project planning effort. Identifi-
cation, projection, assessment, management, and monitoring all take time. But the
effort is worth it. To quote Sun Tzu, a Chinese general who lived 2500 years ago, "If
you know the enemy and know yourself, you need not fear the result of a hundred
battles." For the software project manager, the enemy is risk.
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PROBLEMS AND POINTS TO PONDER

6.1. Provide five examples from other fields that illustrate the problems associated
with a reactive risk strategy.

6.2. Describe the difference between “known risks” and “predictable risks.”

6.3. Add three additional questions or topics to each of the risk item checklists pre-
sented at the SEPA Web site.

6.4. You've been asked to build software to support a low-cost video editing sys-
tem. The system accepts videotape as input, stores the video on disk, and then allows
the user to do a wide range of edits to the digitized video. The result can then be out-
put to tape. Do a small amount of research on systems of this type and then make a
list of technology risks that you would face as you begin a project of this type.

6.5. You're the project manager for a major software company. You've been asked
to lead a team that's developing “next generation” word-processing software (see
Section 3.4.2 for a brief description). Create a risk table for the project.
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6.6. Describe the difference between risk components and risk drivers.

6.7. Develop arisk mitigation strategy and specific risk mitigation activities for three
of the risks noted in Figure 6.2.

6.8. Develop a risk monitoring strategy and specific risk monitoring activities for
three of the risks noted in Figure 6.2. Be sure to identify the factors that you'll be mon-
itoring to determine whether the risk is becoming more or less likely.

6.9. Develop a risk management strategy and specific risk management activities
for three of the risks noted in Figure 6.2.

6.10. Attempt to refine three of the risks noted in Figure 6.2 and then create risk
information sheets for each.

6.11. Represent three of the risks noted in Figure 6.2 using a CTC format.

6.12. Recompute the risk exposure discussed in Section 6.4.2 when cost/LOC is $16
and the probability is 60 percent.

6.13. Can you think of a situation in which a high-probability, high-impact risk would
not be considered as part of your RMMM plan?

6.14. Referring the the risk referent shown on Figure 6.4, would the curve always
have the symmetric arc shown or would there be situations in which the curve would
be more distorted. If so, suggest a scenario in which this might happen.

6.15. Do some research on software safety issues and write a brief paper on the
subject. Do a Web search to get current information.

6.16. Describe five software application areas in which software safety and hazard
analysis would be a major concern.

FURTHER READINGS AND INFORMATION SOURCES

The software risk management literature has expanded significantly in recent years.
Hall [HAL98] presents one of the more thorough treatments of the subject. Karolak
[KAR96] has written a guidebook that introduces an easy-to-use risk analysis model
with worthwhile checklists and questionnaires. A useful snapshot of risk assessment
has been written by Grey (Practical Risk Assessment for Project Management, Wiley,
1995). His abbreviated treatment provides a good introduction to the subject. Addi-
tional books worth examining include
Chapman, C.B. and S. Ward, Project Risk Management: Processes, Techniques and Insights,
wiley, 1997.
Schuyler, J.R., Decision Analysis in Projects, Project Management Institute Publications, 1997.
Wideman, R.M. (editor), Project & Program Risk Management: A Guide to Managing Project
Risks and Opportunities, Project Management Institute Publications, 1998.
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Capers Jones (Assessment and Control of Software Risks, Prentice-Hall, 1994) pre-
sents a detailed discussion of software risks that includes data collected from hun-
dreds of software projects. Jones defines 60 risk factors that can affect the outcome
of software projects. Boehm [BOE89] suggests excellent questionnaire and checklist
formats that can prove invaluable in identifying risk. Charette [CHA89] presents a
detailed treatment of the mechanics of risk analysis, calling on probability theory and
statistical techniques to analyze risks. In a companion volume, Charette (Application
Strategies for Risk Analysis, McGraw-Hill, 1990) discusses risk in the context of both
system and software engineering and suggests pragmatic strategies for risk man-
agement. Gilb (Principles of Software Engineering Management, Addison-Wesley, 1988)
presents a set of "principles" (which are often amusing and sometimes profound) that
can serve as a worthwhile guide for risk management.

The March 1995 issue of American Programmer, the May 1997 issue of IEEE Soft-
ware, and the June 1998 issue of the Cutter IT Journal all are dedicated to risk man-
agement.

The Software Engineering Institute has published many detailed reports and guide-
books on risk analysis and management. The Air Force Systems Command pamphlet
AFSCP 800-45 [AFC88] describes risk identification and reduction techniques. Every
issue of the ACM Software Engineering Notes has a section entitled "Risks to the Pub-
lic" (editor, P.G. Neumann). If you want the latest and best software horror stories,
this is the place to go.

A wide variety of information sources on risk analysis and management is avail-
able on the Internet. An up-to-date list of World Wide Web references that are rele-
vant to risk can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/risk.mhtml
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PROJECT SCHEDULING AND
TRACKING

n the late 1960s, a bright-eyed young engineer was chosen to "write" a com-

puter program for an automated manufacturing application. The reason for

his selection was simple. He was the only person in his technical group who
had attended a computer programming seminar. He knew the ins and outs of
assembly language and FORTRAN but nothing about software engineering and
even less about project scheduling and tracking.

His boss gave him the appropriate manuals and a verbal description of what
had to be done. He was informed that the project must be completed in two
months.

He read the manuals, considered his approach, and began writing code.
After two weeks, the boss called him into his office and asked how things were
going.

"Really great," said the young engineer with youthful enthusiasm, "This was
much simpler than I thought. I'm probably close to 75 percent finished."

The boss smiled. "That's really terrific," he said, encouraging the young
engineer to keep up the good work. They planned to meet again in a week'’s
time.

A week later the boss called the engineer into his office and asked, "Where
are we?"

QUICK What is it? You've selected
an appropriate process model,
you've identified the software Whyis it important? In order to build a complex sys-

ware engineers. At an individual level, softwcre
engineers themselves.

LOOK

engineering tasks that have to be performed, you
estimated the amount of work and the number of
people, you know the deadline, you've even con-
sidered the risks. Now it's time to connect the dots.
That is, you have to create a network of software
engineering tasks that will enable you to get the
job done on time. Once the network is created,
you have to assign responsibility for each task,
make sure it gets done, ond adapt the network as
risks become reality. In a nutshell, that's software
project scheduling and tracking.

Who does it? At the project level, software proj-ect
managers using information solicited from soft-

tem, maony software engineering tasks occur in
parallel, and the result of work performed during
one task may have a profound effect on work to
be conducted in another task. These interdepen-
dencies are very difficult to understond without a
schedule. 1t's also virtually impossible to assess
progress on a moderate or large software project
without a detailed schedule.

What are the steps? The software engineering

tasks dictated by the software process model cre
refined for the functionality to e built. Effort and
duration are allocated to each task and a task
network (also called an “activity network”) is

165
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QUICK created in a manner that enables work, (2) effort and timing are intelligently allo-

LOOK the software team to meet the cated to each task, (3) interdependencies between

delivery deadline established. tasks are properly indicated, (4) resources cre allo-

What is the work product? The project schedule ond cated for the work to be done, and (5) closely

related information are produced. spaced milestones cre provided so that progress
How do I ensure that I've done it right? Proper sched- can be tracked.

uling requires that (1) all tasks appecar in the net-

"Everything's going well," said the youngster, “but I've run into a few small snags.
I'll get them ironed out and be back on track soon."

"How does the deadline look?" the boss asked.

"No problem," said the engineer. "I'm close to 90 percent complete."

If you've been working in the software world for more than a few years, you can fin-
ish the story. It'll come as no surprise that the young engineer! stayed 90 percent
complete for the entire project duration and finished (with the help of others) only
one month late.

This story has been repeated tens of thousands of times by software developers
during the past three decades. The big question is why?

7.1 BASIC CONCEPTS

Although there are many reasons why software is delivered late, most can be traced
to one or more of the following root causes:

e Anunrealistic deadline established by someone outside the software devel-
opment group and forced on managers and practitioner's within the group.

Q,o,.e.. ¢ Changing customer requirements that are not reflected in schedule changes.
“Excessive of * An honest underestimate of the amount of effort and/or the number of
irrational schedules resources that will be required to do the job.
(s]ir:g?éorgzglty the e Predictable and/or unpredictable risks that were not considered when the
destructive influence project commenced.
in all of software.”  Technical difficulties that could not have been foreseen in advance.

Rt Jones ¢ Human difficulties that could not have been foreseen in advance.

e Miscommunication among project staff that results in delays.
e A failure by project management to recognize that the project is falling
behind schedule and a lack of action to correct the problem.

Aggressive (read "unrealistic") deadlines are a fact of life in the software business.
Sometimes such deadlines are demanded for reasons that are legitimate, from the

1 If you're wondering whether this story is autobiographical, it is!



Qlote:

“I'love deadlines. |
like the whooshing
sound they make as
they fly by.”
Douglas Adams

2 What should
®  we do when
management
demands that we
make a deadline
that is
impossible?

CHAPTER 7 PROJECT SCHEDULING AND TRACKING 167

point of view of the person who sets the deadline. But common sense says that legit-
imacy must also be perceived by the people doing the work.

7.1.1 Comments on “Lateness”

Napoleon once said: "Any commander in chief who undertakes to carry out a plan
which he considers defective is at fault; he must put forth his reasons, insist on the
plan being changed, and finally tender his resignation rather than be the instrument
of his army's downfall.” These are strong words that many software project man-
agers should ponder.

The estimation and risk analysis activities discussed in Chapters 5 and 6, and the
scheduling techniques described in this chapter are often implemented under the
constraint of a defined deadline. If best estimates indicate that the deadline is unre-
alistic, a competent project manager should "protect his or her team from undue
[schedule] pressure . . . [and] reflect the pressure back to its originators" [PAG85].

To illustrate, assume that a software development group has been asked to build
a real-time controller for a medical diagnostic instrument that is to be introduced to
the market in nine months. After careful estimation and risk analysis, the software
project manager comes to the conclusion that the software, as requested, will require
14 calendar months to create with available staff. How does the project manager
proceed?

It is unrealistic to march into the customer's office (in this case the likely customer
is marketing/sales) and demand that the delivery date be changed. External market
pressures have dictated the date, and the product must be released. It is equally fool-
hardy to refuse to undertake the work (from a career standpoint). So, what to do?

The following steps are recommended in this situation:

1. Perform a detailed estimate using historical data from past projects. Deter-
mine the estimated effort and duration for the project.

2. Using an incremental process model (Chapter 2), develop a software engi-
neering strategy that will deliver critical functionality by the imposed dead-
line, but delay other functionality until later. Document the plan.

3. Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic. Be certain to note that all estimates are
based on performance on past projects. Also be certain to indicate the per-
cent improvement that would be required to achieve the deadline as it cur-
rently exists.2 The following comment is appropriate:

"I think we may have a problem with the delivery date for the XYZ controller
software. I've given each of you an abbreviated breakdown of production

2 If the percent of improvement is 10 to 25 percent, it may actually be possible to get the job done.
But, more likely, the percent of improvement in team performance must be greater than 50 per-
cent. This is an unrealistic expectation.
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rates for past projects and an estimate that we've done a number of different
ways. You'll note that I've assumed a 20 percent improvement in past pro-
duction rates, but we still get a delivery date that's 14 calendar months rather
than 9 months away."

4. Offer the incremental development strategy as an alternative:

“We have a few options, and I'd like you to make a decision based on them.
First, we can increase the budget and bring on additional resources so that
we'll have a shot at getting this job done in nine months. But understand that
this will increase risk of poor quality due to the tight timeline.3 Second, we
can remove a humber of the software functions and capabilities that you're
requesting. This will make the preliminary version of the product somewhat
less functional, but we can announce all functionality and then deliver over
the 14 month period. Third, we can dispense with reality and wish the project
complete in nine months. We'll wind up with nothing that can be delivered to
a customer. The third option, I hope you'll agree, is unacceptable. Past his-
tory and our best estimates say that it is unrealistic and a recipe for disaster."

There will be some grumbling, but if solid estimates based on good historical data
are presented, it's likely that negotiated versions of option 1 or 2 will be chosen. The
unrealistic deadline evaporates.

7.1.2 Basic Principles

Fred Brooks, the well-known author of The Mythical Man-Month [BRO95], was once
asked how software projects fall behind schedule. His response was as simple as it
was profound: "One day at a time."

The reality of a technical project (whether it involves building a hydroelectric plant
or developing an operating system) is that hundreds of small tasks must occur to
accomplish a larger goal. Some of these tasks lie outside the mainstream and may
be completed without worry about impact on project completion date. Other tasks
lie on the "critical” path.4 If these "critical" tasks fall behind schedule, the completion
date of the entire project is put into jeopardy.

The project manager’s objective is to define all project tasks, build a network that
depicts their interdependencies, identify the tasks that are critical within the network,
and then track their progress to ensure that delay is recognized "one day at a time."
To accomplish this, the manager must have a schedule that has been defined at a
degree of resolution that enables the manager to monitor progress and control the
project.

Software project scheduling is an activity that distributes estimated effort across the
planned project duration by allocating the effort to specific software engineering tasks.

3 You might also add that adding more people does not reduce calendar time proportionally.
4 The critical path will be discussed in greater detail later in this chapter.
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It is important to note, however, that the schedule evolves over time. During early
stages of project planning, a macroscopic schedule is developed. This type of sched-
ule identifies all major software engineering activities and the product functions to
which they are applied. As the project gets under way, each entry on the macroscopic
schedule is refined into a detailed schedule. Here, specific software tasks (required to
accomplish an activity) are identified and scheduled.

Scheduling for software engineering projects can be viewed from two rather dif-
ferent perspectives. In the first, an end-date for release of a computer-based system
has already (and irrevocably) been established. The software organization is con-
strained to distribute effort within the prescribed time frame. The second view of soft-
ware scheduling assumes that rough chronological bounds have been discussed but
that the end-date is set by the software engineering organization. Effort is distributed
to make best use of resources and an end-date is defined after careful analysis of the
software. Unfortunately, the first situation is encountered far more frequently than
the second.

Like all other areas of software engineering, a number of basic principles guide
software project scheduling:

Compartmentalization. The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish compartmental-
ization, both the product and the process are decomposed (Chapter 3).
Interdependency. The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence while others
can occur in parallel. Some activities cannot commence until the work prod-
uct produced by another is available. Other activities can occur independently.
Time allocation. Each task to be scheduled must be allocated some num-
ber of work units (e.g., person-days of effort). In addition, each task must be
assigned a start date and a completion date that are a function of the interde-
pendencies and whether work will be conducted on a full-time or part-time
basis.

Effort validation. Every project has a defined number of staff members. As
time allocation occurs, the project manager must ensure that no more than
the allocated number of people have been scheduled at any given time. For
example, consider a project that has three assigned staff members (e.g., 3
person-days are available per day of assigned effort®). On a given day, seven
concurrent tasks must be accomplished. Each task requires 0.50 person days
of effort. More effort has been allocated than there are people to do the work.
Defined responsibilities. Every task that is scheduled should be assigned
to a specific team member.

5 In reality, less than three person-days are available because of unrelated meetings, sickness,

vacation, and a variety of other reasons. For our purposes, however, we assume 100 percent
availability.
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Defined outcomes. Every task that is scheduled should have a defined out-
come. For software projects, the outcome is normally a work product (e.g.,
the design of a module) or a part of a work product. Work products are often
combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with
a project milestone. A milestone is accomplished when one or more work
products has been reviewed for quality (Chapter 8) and has been approved.

Each of these principles is applied as the project schedule evolves.

THE RELATIONSHIP BETWEEN PEOPLE AND EFFORT

In a small software development project a single person can analyze requirements,
perform design, generate code, and conduct tests. As the size of a project increases,
more people must become involved. (We can rarely afford the luxury of approach-
ing a ten person-year effort with one person working for ten years!)

There is a common myth (discussed in Chapter 1) that is still believed by many
managers who are responsible for software development effort: "If we fall behind
schedule, we can always add more programmers and catch up later in the project."
Unfortunately, adding people late in a project often has a disruptive effect on the proj-
ect, causing schedules to slip even further. The people who are added must learn the
system, and the people who teach them are the same people who were doing the
work. While teaching, no work is done, and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-
ber of communication paths and the complexity of communication throughout a proj-
ect. Although communication is absolutely essential to successful software
development, every new communication path requires additional effort and there-
fore additional time.

7.2.1 An Example

Consider four software engineers, each capable of producing 5000 LOC/year when
working on an individual project. When these four engineers are placed on a team
project, six potential communication paths are possible. Each communication path
requires time that could otherwise be spent developing software. We shall assume
that team productivity (when measured in LOC) will be reduced by 250 LOC/year for
each communication path, due to the overhead associated with communication.
Therefore, team productivity is 20,000 — (250 x 6) = 18,500 LOC/year—7.5 percent
less than what we might expect.6

6 It is possible to pose a counterargument: Communication, if it is effective, can enhance the qual-
ity of the work being performed, thereby reducing the amount of rework and increasing the indi-
vidual productivity of team members. The jury is still out!
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The one-year project on which the team is working falls behind schedule, and with
two months remaining, two additional people are added to the team. The number of
communication paths escalates to 14. The productivity input of the new staff is the
equivalent of 840 x 2 = 1680 LOC for the two months remaining before delivery. Team
productivity now is 20,000 + 1680 — (250 x 14) = 18,180 LOC/year.

Although the example is a gross oversimplification of real-world circumstances,
it does illustrate another key point: The relationship between the number of people
working on a software project and overall productivity is not linear.

Based on the people/work relationship, are teams counterproductive? The answer
is an emphatic "no," if communication improves software quality. In fact, formal
technical reviews (see Chapter 8) conducted by software teams can lead to better
analysis and design, and more important, can reduce the number of errors that go
undetected until testing (thereby reducing testing effort). Hence, productivity and
quality, when measured by time to project completion and customer satisfaction, can
actually improve.

7.2.2. An Empirical Relationship

Recalling the software equation [PUT92] that was introduced in Chapter 5, we can
demonstrate the highly nonlinear relationship between chronological time to com-
plete a project and human effort applied to the project. The number of delivered
lines of code (source statements), L, is related to effort and development time by
the equation:

L=Px EV/3t4/3

where E is development effort in person-months, P is a productivity parameter that
reflects a variety of factors that lead to high-quality software engineering work (typ-
ical values for P range between 2,000 and 12,000), and ¢ is the project duration in cal-
endar months.

Rearranging this software equation, we can arrive at an expression for develop-
ment effort E:

E=13/(P34) (7-1)

where E is the effort expended (in person-years) over the entire life cycle for software
development and maintenance and ¢ is the development time in years. The equation
for development effort can be related to development cost by the inclusion of a bur-
dened labor rate factor ($/person-year).

This leads to some interesting results. Consider a complex, real-time software proj-
ect estimated at 33,000 LOC, 12 person-years of effort. If eight people are assigned
to the project team, the project can be completed in approximately 1.3 years. If, how-
ever, we extend the end-date to 1.75 years, the highly nonlinear nature of the model
described in Equation (7-1) yields:

E=1L3/(P3t*) ~ 3.8 person-years.
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This implies that, by extending the end-date six months, we can reduce the number
of people from eight to four! The validity of such results is open to debate, but the
implication is clear: Benefit can be gained by using fewer people over a somewhat
longer time span to accomplish the same objective.

7.2.3 Effort Distribution

Each of the software project estimation techniques discussed in Chapter 5 leads to
estimates of work units (e.g., person-months) required to complete software devel-
opment. A recommended distribution of effort across the definition and development
phases is often referred to as the 40-20-40 rule.” Forty percent of all effort is allocated
to front-end analysis and design. A similar percentage is applied to back-end testing.
You can correctly infer that coding (20 percent of effort) is de-emphasized.

This effort distribution should be used as a guideline only. The characteristics of
each project must dictate the distribution of effort. Work expended on project plan-
ning rarely accounts for more than 2-3 percent of effort, unless the plan commits an
organization to large expenditures with high risk. Requirements analysis may com-
prise 10-25 percent of project effort. Effort expended on analysis or prototyping should
increase in direct proportion with project size and complexity. A range of 20 to 25
percent of effort is normally applied to software design. Time expended for design
review and subsequent iteration must also be considered.

Because of the effort applied to software design, code should follow with relatively
little difficulty. A range of 15-20 percent of overall effort can be achieved. Testing and
subsequent debugging can account for 30-40 percent of software development effort.
The criticality of the software often dictates the amount of testing that is required. If
software is human rated (i.e., software failure can result in loss of life), even higher
percentages are typical.

DEFINING A TASK SET FOR THE SOFTWARE PROJECT

A number of different process models were described in Chapter 2. These models
offer different paradigms for software development. Regardless of whether a soft-
ware team chooses a linear sequential paradigm, an iterative paradigm, an evolu-
tionary paradigm, a concurrent paradigm or some permutation, the process model
is populated by a set of tasks that enable a software team to define, develop, and ulti-
mately support computer software.

No single set of tasks is appropriate for all projects. The set of tasks that would be
appropriate for a large, complex system would likely be perceived as overkill for a
small, relatively simple software product. Therefore, an effective software process

7 Today, more than 40 percent of all project effort is often recommended for analysis and design
tasks for large software development projects. Hence, the name 40-20-40 no longer applies in a
strict sense.
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should define a collection of task sets, each designed to meet the needs of different
types of projects.

A task set is a collection of software engineering work tasks, milestones, and deliv-
erables that must be accomplished to complete a particular project. The task set to
be chosen must provide enough discipline to achieve high software quality. But, at
the same time, it must not burden the project team with unnecessary work.

Task sets are designed to accommodate different types of projects and different
degrees of rigor. Although it is difficult to develop a comprehensive taxonomy of soft-
ware project types, most software organizations encounter the following projects:

1. Concept development projects that are initiated to explore some new business
concept or application of some new technology.

2. New application development projects that are undertaken as a consequence
of a specific customer request.

3. Application enhancement projects that occur when existing software under-
goes major modifications to function, performance, or interfaces that are
observable by the end-user.

4. Application maintenance projects that correct, adapt, or extend existing soft-
ware in ways that may not be immediately obvious to the end-user.

5. Reengineering projects that are undertaken with the intent of rebuilding an
existing (legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.
When taken in combination, these factors provide an indication of the degree of rigor
with which the software process should be applied.

7.3.1 Degree of Rigor

Even for a project of a particular type, the degree of rigor with which the software
process is applied may vary significantly. The degree of rigor is a function of many
project characteristics. As an example, small, non-business-critical projects can gen-
erally be addressed with somewhat less rigor than large, complex business-critical
applications. It should be noted, however, that all projects must be conducted in a
manner that results in timely, high-quality deliverables. Four different degrees of rigor
can be defined:

Casual. All process framework activities (Chapter 2) are applied, but only a
minimum task set is required. In general, umbrella tasks will be minimized
and documentation requirements will be reduced. All basic principles of soft-
ware engineering are still applicable.

Structured. The process framework will be applied for this project. Frame-
work activities and related tasks appropriate to the project type will be
applied and umbrella activities necessary to ensure high quality will be
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applied. SQA, SCM, documentation, and measurement tasks will be con-
ducted in a streamlined manner.

Strict. The full process will be applied for this project with a degree of disci-
pline that will ensure high quality. All umbrella activities will be applied and
robust work products will be produced.

Quick reaction. The process framework will be applied for this project, but
because of an emergency situation8 only those tasks essential to maintaining
good quality will be applied. “Back-filling” (i.e., developing a complete set of
documentation, conducting additional reviews) will be accomplished after
the application/product is delivered to the customer.

The project manager must develop a systematic approach for selecting the degree
of rigor that is appropriate for a particular project. To accomplish this, project adap-
tation criteria are defined and a task set selector value is computed.

7.3.2 Defining Adaptation Criteria
Adaptation criteria are used to determine the recommended degree of rigor with which
the software process should be applied on a project. Eleven adaptation criteria [PRE99]
are defined for software projects:

e Size of the project

e Number of potential users

e Mission criticality

e Application longevity

Stability of requirements

e Ease of customer/developer communication

e Maturity of applicable technology

e Performance constraints

e Embedded and nonembedded characteristics

e Project staff

e Reengineering factors
Each of the adaptation criteria is assigned a grade that ranges between 1 and 5, where
1 represents a project in which a small subset of process tasks are required and over-
all methodological and documentation requirements are minimal, and 5 represents

a project in which a complete set of process tasks should be applied and overall
methodological and documentation requirements are substantial.

8 Emergency situations should be rare (they should not occur on more than 10 percent of all work
conducted within the software engineering context). An emergency is not the same as a project
with tight time constraints.
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TABLE 7.1 COMPUTING THE TASK SET SELECTOR

Adaptation Criteria Grade Weight Entry Point Multiplier Product
Conc. NDev. Enhan. Maint. Reeng.
Size of project - 1.20 0 1 1 1 1 -
Number of users - 1.10 0 1 1 1 1 o
Business criticality _ 1.10 0 ] 1 1 1 o
Longevity . 0.90 0 1 1 0 0 -
Stability of requirements - 1.20 0 1 1 1 1 -
Ease of communication - 0.90 1 1 1 1 1 -
Maturity of technology - 0.90 1 1 0 0 1 -
Performance constraints - 0.80 0 ] 1 0 ] -
Embedded/nonembedded _ 1.20 1 ] 1 0 1 -
Project sfaffing - 1.00 1 1 1 1 1 -
Interoperability - 1.10 0 1 1 1 1 -
Reengineering factors . 1.20 0 0 0 0 1 _

Task set selector (TSS)

7.3.3 Computing a Task Set Selector Value

To select the appropriate task set for a project, the following steps should be con-

ducted:
@ How do we
® choose the 1. Review each of the adaptation criteria in Section 7.3.2 and assign the appro-
appropriate task priate grades (1 to 5) based on the characteristics of the project. These grades
set for our should be entered into Table 7.1.
project?

2. Review the weighting factors assigned to each of the criteria. The value of a
weighting factor ranges from 0.8 to 1.2 and provides an indication of the rel-
ative importance of a particular adaptation criterion to the types of software
developed within the local environment. If modifications are required to bet-
ter reflect local circumstances, they should be made.

3. Multiply the grade entered in Table 7.1 by the weighting factor and by the
entry point multiplier for the type of project to be undertaken. The entry point
multiplier takes on a value of 0 or 1 and indicates the relevance of the adap-
tation criterion to the project type. The result of the product

grade x weighting factor x entry point multiplier

is placed in the Product column of Table 7.1 for each adaptation criteria indi-
vidually.

4. Compute the average of all entries in the Product column and place the result
in the space marked task set selector (TSS). This value will be used to help
select the task set that is most appropriate for the project.
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TABLE 7.2 COMPUTING THE TASK SET SELECTOR—AN EXAMPLE

Adaptation Criteria Grade Weight Entry Point Multiplier Product
Conc. NDev. Enhan. Maint. Reeng.
Size of project 2 1.2 - 1 2.4
Number of users 3 1.1 - 1 3.3
Business criticality 4 1.1 - 1 4.4
Longevity 3 0.9 . 1 2.7
Stability of requirements 2 1.2 . 1 2.4
Ease of communication 2 0.9 - 1 1.8
Maturity of technology 2 0.9 - 1 1.8
Performance constraints 3 0.8 - ] 2.4
Embedded,/nonembedded 3 1.2 o 1 3.6
Project staffing 2 1.0 - 1 2.0
Inferoperability 4 1.1 . 1 4.4
Reengineering factors 0 1.2 _ 0 0.0
Task set selector (TSS) 2.8

ancs‘
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7.3.4 Interpreting the TSS Value and Selecting the Task Set

Once the task set selector is computed, the following guidelines can be used to select
the appropriate task set for a project:

Task set selector value Degree of rigor
TSS< 1.2 casual
1.0<TSS< 3.0 structured
TSS>2.4 strict

The overlap in TSS values from one recommended task set to another is purposeful
and is intended to illustrate that sharp boundaries are impossible to define when mak-
ing task set selections. In the final analysis, the task set selector value, past experi-
ence, and common sense must all be factored into the choice of the task set for a
project.

Table 7.2 illustrates how TSS might be computed for a hypothetical project. The
project manager selects the grades shown in the Grade column. The project type is
new application development. Therefore, entry point multipliers are selected from the
NDev column. The entry in the Product column is computed using

Grade x Weight x NewDev entry point multiplier

The value of TSS (computed as the average of all entries in the product column) is
2.8. Using the criteria discussed previously, the manager has the option of using either
the structured or the strict task set. The final decision is made once all project factors
have been considered.
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SELECTING SOFTWARE ENGINEERING TASKS

In order to develop a project schedule, a task set must be distributed on the project
time line. As we noted in Section 7.3, the task set will vary depending upon the proj-
ect type and the degree of rigor. Each of the project types described in Section 7.3
may be approached using a process model that is linear sequential, iterative (e.g., the
prototyping or incremental models), or evolutionary (e.g., the spiral model). In some
cases, one project type flows smoothly into the next. For example, concept develop-
ment projects that succeed often evolve into new application development projects.
As a new application development project ends, an application enhancement proj-
ect sometimes begins. This progression is both natural and predictable and will occur
regardless of the process model that is adopted by an organization. Therefore, the
major software engineering tasks described in the sections that follow are applica-
ble to all process model flows. As an example, we consider the software engineering
tasks for a concept development project.

Concept development projects are initiated when the potential for some new tech-
nology must be explored. There is no certainty that the technology will be applica-
ble, but a customer (e.g., marketing) believes that potential benefit exists. Concept
development projects are approached by applying the following major tasks:

Concept scoping determines the overall scope of the project.

Preliminary concept planning establishes the organization’s ability to
undertake the work implied by the project scope.

Technology risk assessment evaluates the risk associated with the tech-
nology to be implemented as part of project scope.

Proof of concept demonstrates the viability of a new technology in the soft-
ware context.

Concept implementation implements the concept representation in a
manner that can be reviewed by a customer and is used for “marketing” pur-
poses when a concept must be sold to other customers or management.

Customer reaction to the concept solicits feedback on a new technology
concept and targets specific customer applications.

A quick scan of these tasks should yield few surprises. In fact, the software engi-
neering flow for concept development projects (and for all other types of projects as
well) is little more than common sense.

The software team must understand what must be done (scoping); then the team
(or manager) must determine whether anyone is available to do it (planning), con-
sider the risks associated with the work (risk assessment), prove the technology in
some way (proof of concept), and implement it in a prototypical manner so that the
customer can evaluate it (concept implementation and customer evaluation). Finally,
if the concept is viable, a production version (translation) must be produced.
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It is important to note that concept development framework activities are itera-
tive in nature. That is, an actual concept development project might approach these
activities in a number of planned increments, each designed to produce a deliverable
that can be evaluated by the customer.

If a linear process model flow is chosen, each of these increments is defined in a
repeating sequence as illustrated in Figure 7.1. During each sequence, umbrella activ-
ities (described in Chapter 2) are applied; quality is monitored; and at the end of each
sequence, a deliverable is produced. With each iteration, the deliverable should con-
verge toward the defined end product for the concept development stage. If an evo-
lutionary model is chosen, the layout of tasks 1.1 through 1.6 would appear as shown
in Figure 7.2. Major software engineering tasks for other project types can be defined
and applied in a similar manner.

REFINEMENT OF MAJOR TASKS

The major tasks described in Section 7.4 may be used to define a macroscopic
schedule for a project. However, the macroscopic schedule must be refined to
create a detailed project schedule. Refinement begins by taking each major task
and decomposing it into a set of subtasks (with related work products and mile-
stones).

As an example of task decomposition, consider concept scoping for a development
project, discussed in Section 7.4. Task refinement can be accomplished using an out-
line format, but in this book, a process design language approach is used to illustrate
the flow of the concept scoping activity:



FIGURE 7.2

Concept
development
tasks using an
evolutionary
model

SEPN
\VE2

The adaptable process
model (APM) contains @
complete process design
language description for
all software engineering
tasks.

CHAPTER 7 PROJECT SCHEDULING AND TRACKING 179

Preliminary concept planning
Technology risk assessment

Planning

Engineering/

Project definition '
construction

Concept scoping

Proof of concept

WAL YE

——N\. " New Application
Application development

—_— Application enhancement
Re-engineering 1 qintenance

Concept implementation

| Customer reaction

Release
Customer
evaluation
Task definition: Task I.1 Concept Scoping
(RR Identify need, benefits and potential customers;
1.1.2 Define desired output/control and input events that drive the application;

Begin Task 1.1.2
1.1.2.1  FTR: Review written description of need®
1.1.2.2  Derive a list of customer visible outputs/inputs
case of: mechanics
mechanics = quality function deployment
meet with customer to isolate major concept requirements;
interview end-users;
observe current approach to problem, current process;
review past requests and complaints;
mechanics = structured analysis
make list of major data objects;
define relationships between objects;
define object attributes;
mechanics = object view
make list of problem classes;
develop class hierarchy and class connections;
define attributes for classes;
endcase
1.1.2.3 FTR: Review outputs/inputs with customer and revise as required;
endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;
Begin Task I.1.3

9 FTRindicates that a formal technical review (Chapter 8) is to be conducted.
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1.1.3.1  FTR: Review output and input data objects derived in task 1.1.2;
1.1.3.2  Derive a model of functions/behaviors;
case of: mechanics
mechanics = quality function deployment
meet with customer to review major concept requirements;
interview end-users;
observe current approach to problem, current process:
develop a hierarchical outline of functions/behaviors;
mechanics = structured analysis
derive a context level data flow diagram;
refine the data flow diagram to provide more detail;
write processing narratives for functions at lowest level of refinement;
mechanics = object view
define operations/methods that are relevant for each class;
endcase
1.1.8.3 FTR: Review functions/behaviors with customer and revise as required;
endtask Task I.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;
1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a Scope Definition;
endTask definition: Task I.1

The tasks and subtasks noted in the process design language refinement form the
basis for a detailed schedule for the concept scoping activity.

DEFINING A TASK NETWORK

Individual tasks and subtasks have interdependencies based on their sequence. In
addition, when more than one person is involved in a software engineering project,
it is likely that development activities and tasks will be performed in parallel. When
this occurs, concurrent tasks must be coordinated so that they will be complete when
later tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the
task flow for a project. It is sometimes used as the mechanism through which task
sequence and dependencies are input to an automated project scheduling tool. In its
simplest form (used when creating a macroscopic schedule), the task network depicts
major software engineering tasks. Figure 7.3 shows a schematic task network for a
concept development project.

The concurrent nature of software engineering activities leads to a number of
important scheduling requirements. Because parallel tasks occur asynchronously, the
planner must determine intertask dependencies to ensure continuous progress toward
completion. In addition, the project manager should be aware of those tasks that lie
on the critical path. That is, tasks that must be completed on schedule if the project
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I.3a |.5a
Tech. risk Concep'
assessment implement.
1.2 1.3b |.4 1.5b
Concept Tech.Risk |—  Proof of Concept Infegrate
planning assessment concept implement. a b c
I.3¢ |.5¢ 1.6
Tech. risk Concept Customer
assessment implement. reaction
pﬁ

Three 1.5 tasks are
applied in parallel to
3 different concept
functions

FIGURE 7.3 A task network for concept development
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as a whole is to be completed on schedule. These issues are discussed in more detail
later in this chapter.

It is important to note that the task network shown in Figure 7.3 is macroscopic.
In a detailed task network (a precursor to a detailed schedule), each activity shown
in Figure 7.3 would be expanded. For example, Task 1.1 would be expanded to show
all tasks detailed in the refinement of Tasks I.1 shown in Section 7.5.

SCHEDULING

Scheduling of a software project does not differ greatly from scheduling of any multi-
task engineering effort. Therefore, generalized project scheduling tools and tech-
niques can be applied with little modification to software projects.

Program evaluation and review technique (PERT) and critical path method (CPM)
[MODS83] are two project scheduling methods that can be applied to software devel-
opment. Both techniques are driven by information already developed in earlier proj-
ect planning activities:

e Estimates of effort

e A decomposition of the product function

¢ The selection of the appropriate process model and task set

e Decomposition of tasks
Interdependencies among tasks may be defined using a task network. Tasks, some-
times called the project work breakdown structure (WBS), are defined for the product
as a whole or for individual functions.

Both PERT and CPM provide quantitative tools that allow the software planner to
(1) determine the critical path—the chain of tasks that determines the duration of the



182

SEPN
\VED

CASE tools
project/scheduling and
planning

2

e,
POINT
A timeline chart
enables you fo
determine what tasks
will be conducted ot a
given point in fime.

PART TWO MANAGING SOFTWARE PROJECTS

project; (2) establish “most likely” time estimates for individual tasks by applying sta-
tistical models; and (3) calculate “boundary times” that define a time "window" for a
particular task.

Boundary time calculations can be very useful in software project scheduling. Slip-
page in the design of one function, for example, can retard further development of
other functions. Riggs [RIG81] describes important boundary times that may be dis-
cerned from a PERT or CPM network: (1) the earliest time that a task can begin when
all preceding tasks are completed in the shortest possible time, (2) the latest time for
task initiation before the minimum project completion time is delayed, (3) the earli-
est finish—the sum of the earliest start and the task duration, (4) the latest finish—
the latest start time added to task duration, and (5) the total float—the amount of
surplus time or leeway allowed in scheduling tasks so that the network critical path
is maintained on schedule. Boundary time calculations lead to a determination of
critical path and provide the manager with a quantitative method for evaluating
progress as tasks are completed.

Both PERT and CPM have been implemented in a wide variety of automated tools
that are available for the personal computer [THE93]. Such tools are easy to use and
make the scheduling methods described previously available to every software proj-
ect manager.

7.7.1 Timeline Charts

When creating a software project schedule, the planner begins with a set of tasks (the
work breakdown structure). If automated tools are used, the work breakdown is input
as a task network or task outline. Effort, duration, and start date are then input for
each task. In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a timeline chart, also called a Gantt chart, is gen-
erated. A timeline chart can be developed for the entire project. Alternatively, sepa-
rate charts can be developed for each project function or for each individual working
on the project.

Figure 7.4 illustrates the format of a timeline chart. It depicts a part of a software
project schedule that emphasizes the concept scoping task (Section 7.5) for a new
word-processing (WP) software product. All project tasks (for concept scoping) are
listed in the left-hand column. The horizontal bars indicate the duration of each task.
When multiple bars occur at the same time on the calendar, task concurrency is
implied. The diamonds indicate milestones.

Once the information necessary for the generation of a timeline chart has been
input, the majority of software project scheduling tools produce project tables—a tab-
ular listing of all project tasks, their planned and actual start- and end-dates, and a
variety of related information (Figure 7.5). Used in conjunction with the timeline chart,
project tables enable the project manager to track progress.
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Work tasks

Week 2

Week 3

Week 4

Week 5

I.1.1 Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
I.1.2 Define desired output/control/input (OCl)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCl as required
Milestone: OCI defined
I.1.3 Define the function/behavior
Define keyboard functions
Define voice input functions
Describe modes of interaction
Describe spell/grammar check
Describe other WP functions
FTR: Review OCI definition with customer
Revise as required
Milestone: OCI definition complete
I.1.4 lIsolation software elements
Milestone: Software elements defined
I.1.5 Research availability of existing software
Research text editing components
Research voice input components
Research file management components

I.1.6 Define technical feasibility

Evaluate voice input

Evaluate grammar checking

Milestone: Technical feasibility assessed
Make quick estimate of size

Create a scope definition

Review scope document with customer
Revise document as required

Milestone: Scope document complete

o N

Research spell/grammar check components
Milestone: Reusable components identified

JILT

FIGURE 7.4 An example timeline chart
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Planned| Actual | Planned | Actual |Assigned| Effort
Work tasks start start |complete|complete | person |allocated Notes
[.1.1 Identify needs and benefits Scoping will
Meet with customers wk1,d1 | wkl, d1 wk1, d2 wk1, d2 BLS 2 p-d require more
Identify needs and project constraints wk1,d2 | wkl,d2 | wkl,d2 | wkl,d2 |JPP 1 pd effort /time
Establish product statement wk1,d3 | wk1,d3 | wkl,d3 wk1, d3 BLS/JPP 1 pd
Milestone: Product statement defined wk1,d3 | wk1,d3 | wkl,d3 wk1, d3
1.1.2 Define desired output/control /input (OClI)
Scope keyboard functions wkl,d4 | wkl,d4 | wk2,d2 BLS 1.5 pd
Scope voice input functions wk1,d3 | wk1,d3 | wk2, d2 JPP 2 p-d
Scope modes of inferaction wk2, d1 wk2, d3 MLL 1 pd
Scope document diagnostics wk2, d1 wk2, d2 BLS 1.5 pd
Scope other WP functions wk1,d4 | wk1,d4 | wk2,d3 JPP 2 p-d
Document OCI wk2, d1 wk2, d3 MLL 3 p-d
FTR: Review OCI with customer wk2, d3 wk2, d3 all 3 pd
Revise OCl as required wk2, d4 wk2, d4 all 3 p-d
Milestone: OCI defined wk2, d5 wk2, d5
I.1.3 Define the function/behavior
—
“— -
‘_\

FIGURE 7.5 An example project table
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7.7.2 Tracking the Schedule

The project schedule provides a road map for a software project manager. If it has
been properly developed, the project schedule defines the tasks and milestones that
must be tracked and controlled as the project proceeds. Tracking can be accomplished
in a number of different ways:

e Conducting periodic project status meetings in which each team member
reports progress and problems.

¢ Evaluating the results of all reviews conducted throughout the software engi-
neering process.

¢ Determining whether formal project milestones (the diamonds shown in Fig-
ure 7.4) have been accomplished by the scheduled date.

e Comparing actual start-date to planned start-date for each project task listed
in the resource table (Figure 7.5).

¢ Meeting informally with practitioners to obtain their subjective assessment of
progress to date and problems on the horizon.

e Using earned value analysis (Section 7.8) to assess progress quantitatively.

In reality, all of these tracking techniques are used by experienced project managers.

Control is employed by a software project manager to administer project
resources, cope with problems, and direct project staff. If things are going well
(i.e., the project is on schedule and within budget, reviews indicate that real progress
is being made and milestones are being reached), control is light. But when prob-
lems occur, the project manager must exercise control to reconcile them as quickly
as possible. After a problem has been diagnosed,!0 additional resources may be
focused on the problem area: staff may be redeployed or the project schedule can
be redefined.

When faced with severe deadline pressure, experienced project managers some-
times use a project scheduling and control technique called time-boxing [ZAH95]. The
time-boxing strategy recognizes that the complete product may not be deliverable
by the predefined deadline. Therefore, an incremental software paradigm (Chapter 2)
is chosen and a schedule is derived for each incremental delivery.

The tasks associated with each increment are then time-boxed. This means that
the schedule for each task is adjusted by working backward from the delivery date
for the increment. A “box” is put around each task. When a task hits the boundary of
its time box (plus or minus 10 percent), work stops and the next task begins.

The initial reaction to the time-boxing approach is often negative: “If the work isn’'t
finished, how can we proceed?” The answer lies in the way work is accomplished.
By the time the time-box boundary is encountered, it is likely that 90 percent of the

10 It is important to note that schedule slippage is a symptom of some underlying problem. The role
of the project manager is to diagnose the underlying problem and act to correct it.
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task has been completed.!! The remaining 10 percent, although important, can
(1) be delayed until the next increment or (2) be completed later if required. Rather
than becoming “stuck” on a task, the project proceeds toward the delivery date.

EARNED VALUE ANALYSIS

In Section 7.7.2, we discussed a number of qualitative approaches to project track-
ing. Each provides the project manager with an indication of progress, but an assess-
ment of the information provided is somewhat subjective. It is reasonable to ask
whether there is a quantitative technique for assessing progress as the software team
progresses through the work tasks allocated to the project schedule. In fact, a tech-
nique for performing quantitative analysis of progress does exist. It is called earned
value analysis (EVA).
Humphrey [HUM95] discusses earned value in the following manner:

The earned value system provides a common value scale for every [software project] task,
regardless of the type of work being performed. The total hours to do the whole project are
estimated, and every task is given an earned value based on its estimated percentage of
the total.

Stated even more simply, earned value is a measure of progress. It enables us to
assess the “percent of completeness” of a project using quantitative analysis rather
than rely on a gut feeling. In fact, Fleming and Koppleman [FLE98] argue that earned
value analysis “provides accurate and reliable readings of performance from as early
as 15 percent into the project.”

To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task
represented in the schedule. During the estimation activity (Chapter 5), the
work (in person-hours or person-days) of each software engineering task is
planned. Hence, BCWS; is the effort planned for work task i. To determine
progress at a given point along the project schedule, the value of BCWS is the
sum of the BCWS; values for all work tasks that should have been completed
by that point in time on the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at com-
pletion, BAC. Hence,
BAC =3 (BCWSy) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The
value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

11 A cynic might recall the saying: “The first 90 percent of a system takes 90 percent of the time. The

last 10 percent of the system takes 90 percent of the time.”
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Wilkens [WIL99] notes that “the distinction between the BCWS and the BCWP is that the
former represents the budget of the activities that were planned to be completed and
the latter represents the budget of the activities that actually were completed.” Given
values for BCWS, BAC, and BCWP, important progress indicators can be computed:

Schedule performance index, SPI = BCWP/BCWS
Schedule variance, SV = BCWP - BCWS

SPI is an indication of the efficiency with which the project is utilizing scheduled
resources. An SPI value close to 1.0 indicates efficient execution of the project sched-
ule. SV is simply an absolute indication of variance from the planned schedule.

Percent scheduled for completion = BCWS/BAC

provides an indication of the percentage of work that should have been completed
by time t.

Percent complete = BCWP/BAC

provides a quantitative indication of the percent of completeness of the project at a
given point in time, t.

It is also possible to compute the actual cost of work performed, ACWP. The value
for ACWP is the sum of the effort actually expended on work tasks that have been
completed by a point in time on the project schedule. It is then possible to compute

Cost performance index, CPI = BCWP/ACWP
Cost variance, CV = BCWP - ACWP

A CPI value close to 1.0 provides a strong indication that the project is within its
defined budget. CV is an absolute indication of cost savings (against planned costs)
or shortfall at a particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling diffi-
culties before they might otherwise be apparent. This enables the software project
manager to take corrective action before a project crisis develops.

ERROR TRACKING

Throughout the software process, a project team creates work products (e.g., require-
ments specifications or prototype, design documents, source code). But the team also
creates (and hopefully corrects) errors associated with each work product. If error-
related measures and resultant metrics are collected over many software projects, a
project manager can use these data as a baseline for comparison against error data
collected in real time. Error tracking can be used as one means for assessing the sta-
tus of a current project.

In Chapter 4, the concept of defect removal efficiency was discussed. To review
briefly, the software team performs formal technical reviews (and, later, testing) to
find and correct errors, E, in work products produced during software engineering
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tasks. Any errors that are not uncovered (but found in later tasks) are considered to
be defects, D. Defect removal efficiency (Chapter 4) has been defined as

DRE = E/(E + D)

DRE is a process metric that provides a strong indication of the effectiveness of
quality assurance activities, but DRE and the error and defect counts associated with
it can also be used to assist a project manager in determining the progress that is
being made as a software project moves through its scheduled work tasks.

Let us assume that a software organization has collected error and defect data
over the past 24 months and has developed averages for the following metrics:

* Errors per requirements specification page, Ereq
e Errors per component—design level, Egesign

e Errors per component—code level, Ecqqe

e DRE—requirements analysis

e DRE—architectural design

e DRE—component level design

¢ DRE—coding

As the project progresses through each software engineering step, the software team
records and reports the number of errors found during requirements, design, and
code reviews. The project manager calculates current values for Eyeq, Edesign, and
E.ode- These are then compared to averages for past projects. If current results vary
by more than 20% from the average, there may be cause for concern and there is cer-
tainly cause for investigation.

For example, if Ereq = 2.1 for project X, yet the organizational average is 3.6, one
of two scenarios is possible: (1) the software team has done an outstanding job of
developing the requirements specification or (2) the team has been lax in its review
approach. If the second scenario appears likely, the project manager should take
immediate steps to build additional design time!2 into the schedule to accommodate
the requirements defects that have likely been propagated into the design activity.

These error tracking metrics can also be used to better target review and/or test-
ing resources. For example, if a system is composed of 120 components, but 32 of
these component exhibit Egesign values that have substantial variance from the aver-
age, the project manager might elect to dedicate code review resources to the 32
components and allow others to pass into testing with no code review. Although all
components should undergo code review in an ideal setting, a selective approach
(reviewing only those modules that have suspect quality based on the Egesign value)
might be an effective means for recouping lost time and/or saving costs for a proj-
ect that has gone over budget.

12 In reality, the extra time will be spent reworking requirements defects, but the work will occur
when the design is underway.
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THE PROJECT PLAN

Each step in the software engineering process should produce a deliverable that can
be reviewed and that can act as a foundation for the steps that follow. The Software
Project Plan is produced at the culmination of the planning tasks. It provides baseline
cost and scheduling information that will be used throughout the software process.

The Software Project Plan is a relatively brief document that is addressed to a diverse
audience. It must (1) communicate scope and resources to software management,
technical staff, and the customer; (2) define risks and suggest risk aversion techniques;
(3) define cost and schedule for management review; (4) provide an overall approach
to software development for all people associated with the project; and (5) outline
how quality will be ensured and change will be managed.

A presentation of cost and schedule will vary with the audience addressed. If the
plan is used only as an internal document, the results of each estimation technique
can be presented. When the plan is disseminated outside the organization, a recon-
ciled cost breakdown (combining the results of all estimation techniques) is provided.
Similarly, the degree of detail contained within the schedule section may vary with
the audience and formality of the plan.

It is important to note that the Software Project Plan is not a static document. That
is, the project team revisits the plan repeatedly—updating risks, estimates, schedules
and related information—as the project proceeds and more is learned.

SUMMARY

Scheduling is the culmination of a planning activity that is a primary component of
software project management. When combined with estimation methods and risk
analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project
are used to adapt an appropriate task set for the work to be done. A task network
depicts each engineering task, its dependency on other tasks, and its projected dura-
tion. The task network is used to compute the critical path, a timeline chart and a
variety of project information. Using the schedule as a guide, the project manager
can track and control each step in the software process.
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PROBLEMS AND POINTS TO PONDER

7.1. “Unreasonable” deadlines are a fact of life in the software business. How should
you proceed if you're faced with one?

7.2. What is the difference between a macroscopic schedule and a detailed sched-
ule. Is it possible to manage a project if only a macroscopic schedule is developed?
Why?

7.3. Isthere ever a case where a software project milestone is not tied to a review?
If so, provide one or more examples.

7.4. In Section 7.2.1, we present an example of the “communication overhead” that
can occur when multiple people work on a software project. Develop a counterex-
ample that illustrates how engineers who are well-versed in good software engi-
neering practices and use formal technical reviews can increase the production rate
of a team (when compared to the sum of individual production rates). Hint: You can
assume that reviews reduce rework and that rework can account for 20-40 percent
of a person’s time.

7.5. Although adding people to a late software project can make it later, there are
circumstances in which this is not true. Describe them.

7.6. The relationship between people and time is highly nonlinear. Using Putnam's
software equation (described in Section 7.2.2), develop a table that relates number of
people to project duration for a software project requiring 50,000 LOC and 15 person-
years of effort (the productivity parameter is 5000 and B = 0.37). Assume that the soft-
ware must be delivered in 24 months plus or minus 12 months.

7.7. Assume that you have been contracted by a university to develop an on-line
course registration system (OLCRS). First, act as the customer (if you're a student,
that should be easy!) and specify the characteristics of a good system. (Alternatively,
your instructor will provide you with a set of preliminary requirements for the sys-
tem.) Using the estimation methods discussed in Chapter 5, develop an effort and
duration estimate for OLCRS. Suggest how you would:
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a. Define parallel work activities during the OLCRS project.
b. Distribute effort throughout the project.
c. Establish milestones for the project.

7.8. Using Section 7.3 as a guide compute the TSS for OLCRS. Be sure to show all
of your work. Select a project type and an appropriate task set for the project.

7.9. Define a task network for OLCRS, or alternatively, for another software project
that interests you. Be sure to show tasks and milestones and to attach effort and dura-
tion estimates to each task. If possible, use an automated scheduling tool to perform
this work.

7.10. If an automated scheduling tool is available, determine the critical path for the
network defined in problem 7.7.

7.11. Using a scheduling tool (if available) or paper and pencil (if necessary), develop
a timeline chart for the OLCRS project.

7.12. Refine the task called “technology risk assessment” in Section 7.4 in much the
same way as concept scoping was refined in Section 7.5.

7.13. Assume you are a software project manager and that you've been asked to
compute earned value statistics for a small software project. The project has 56
planned work tasks that are estimated to require 582 person-days to complete. At
the time that you've been asked to do the earned value analysis, 12 tasks have been
completed. However the project schedule indicates that 15 tasks should have been
completed. The following scheduling data (in person-days) are available:

Task Planned effort Actual effort
1 12.0 12.5
2 15.0 11.0
3 13.0 17.0
4 8.0 9.5
5 9.5 9.0
6 18.0 19.0
7 10.0 10.0
8 4.0 4.5
9 12.0 10.0

10 6.0 6.5
11 5.0 4.0
12 14.0 14.5
13 16.0 —
14 6.0 —
15 8.0 —

Compute the SPI, schedule variance, percent scheduled for completion, percent com-
plete, CPI, and cost variance for the project.

7.14. Is it possible to use DRE as a metric for error tracking throughout a software
project? Discuss the pros and cons of using DRE for this purpose.
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FURTHER READINGS AND INFORMATION SOURCES

McConnell (Rapid Development, Microsoft Press, 1996) presents an excellent discus-
sion of the issues that lead to overly optimistic software project scheduling and what
you can do about it. O'Connell (How to Run Successful Projects II: The Silver Bullet,
Prentice-Hall, 1997) presents a step-by-step approach to project management that
will help you to develop a realistic schedule for your projects.

Project scheduling issues are covered in most books on software project man-
agement. McConnell (Software Project Survival Guide, Microsoft Press, 1998), Hoff-
man and Beaumont (Application Development: Managing a Project's Lifé Cycle, Midrange
Computing, 1997), Wysoki and his colleagues (Effective Project Management, Wiley,
1995), and Whitten (Managing Software Development Projects, 2nd ed., Wiley, 1995)
consider the topic in detail. Boddie (Crunch Mode, Prentice-Hall, 1987) has written a
book for all managers who "have 90 days to do a six month project."

Worthwhile information on project scheduling can also be obtained in general pur-
pose project management books. Among the many offerings available are

Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and Control-

ling, Wiley, 1998.
Lewis, J.P., Mastering Project Management: Applying Advanced Concepts of Systems Thinking,
Control and Evaluation, McGraw-Hill, 1998.

Fleming and Koppelman (Earned Value Project Management, Project Management
Institute Publications, 1996) discuss the use of earned value techniques for project
tracking and control in considerable detail.

A wide variety of information sources on project scheduling and management is
available on the Internet. An up-to-date list of World Wide Web references that are
relevant to scheduling can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/
project-sched.mhtml
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KEY he software engineering approach described in this book works toward
oLl ERT a single goal: to produce high-quality software. Yet many readers will be
defect challenged by the question: "What is software quality?"

T o Philip Crosby [CRO79], in his landmark book on quality, provides a wry answer

formal technical to this question:
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150 9000 ... ... 216 The problem of quality management is not what people don't know about it. The

poka yoke. ... . 914 problem is what they think they do know . . .

i 195 In this regard, quality has much in common with sex. Everybody is for it. (Under
it ' """ 19 certain conditions, of course.) Everyone feels they understand it. (Even though they
quallly cosis... wouldn't want to explain it.) Everyone thinks execution is only a matter of following

software safety. 213 natural inclinations. (After all, we do get along somehow.) And, of course, most peo-

SOA ... 199 ple feel that problems in these areas are caused by other people. (If only they would
SQA activities .. 201 take the time to do things right.)
SQAplan ...... 218 . . o

Some software developers continue to believe that software quality is some-
e el thing you begin to worry about after code has been generated. Nothing could
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be further from the truth! Software quality assurance (SQA) is an umbrella activ-
ity (Chapter 2) that is applied throughout the software process.

What is it? It's not enough to
talk the talk by saying that soft-
ware quality is important, you

ity in all software engineering activities, it reduces
the amount of rework that it must do. That results
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in lower costs, and more importantly, improved

have to (1) explicitly define what is meant when
you say “software quality,” (2) create a set of
activities that will help ensure that every soft-
ware engineering work product exhibits high
quality, (3) perform quality assurance activities
on every software project, (4) use metrics to
develop strategies for improving your software
process and, as a consequence, the quality of

time-to-market.

What are the steps? Before software quality assur-

ance activities can be initiated, it is important to
define ‘software quality’ at a number of different
levels of abstraction. Once you understand what
quality is, a software team must identify a set of
SQA activities that will filter errors out of work prod-
ucts before they are passed on.

What is the work product? A Software Quality Assur-
ance Plan is created to define a software team'’s

the end product.

Who does it? Everyone involved in the softwore engi-
neering process is responsible for quality.

Why is it important? You can do it right, or you ccm

SQA strategy. During analysis, design, and code
generation, the primary SQA work product is the

do it over again. If a software team stresses qual- formal technical review summary report. During
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QUICK testing, test ploms ond procedures errors before they become defects! That is, work to
LOOK are produced. Other work prod- improve your defect removal efficiency (Chapters
ucts associated with process 4 and 7), thereby reducing the amount of rework

improvement may also be generated. that your software team has to perform.

How do I ensure that I've done it right? Find

8.1
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Howard Newton.

SQA encompasses (1) a quality management approach, (2) effective software engi-
neering technology (methods and tools), (3) formal technical reviews that are applied
throughout the software process, (4) a multitiered testing strategy, (5) control of soft-
ware documentation and the changes made to it, (6) a procedure to ensure compli-
ance with software development standards (when applicable), and (7) measurement
and reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific activ-
ities that enable a software organization to ensure that it does “the right things at the
right time in the right way.”

QUALITY CONCEPTS!

It has been said that no two snowflakes are alike. Certainly when we watch snow
falling it is hard to imagine that snowflakes differ at all, let alone that each flake pos-
sesses a unique structure. In order to observe differences between snowflakes, we
must examine the specimens closely, perhaps using a magnifying glass. In fact, the
closer we look, the more differences we are able to observe.

This phenomenon, variation between samples, applies to all products of human as
well as natural creation. For example, if two “identical” circuit boards are examined
closely enough, we may observe that the copper pathways on the boards differ slightly
in geometry, placement, and thickness. In addition, the location and diameter of the
holes drilled in the boards varies as well.

All engineered and manufactured parts exhibit variation. The variation between
samples may not be obvious without the aid of precise equipment to measure the
geometry, electrical characteristics, or other attributes of the parts. However, with
sufficiently sensitive instruments, we will likely come to the conclusion that no two
samples of any item are exactly alike.

Variation control is the heart of quality control. A manufacturer wants to minimize
the variation among the products that are produced, even when doing something rel-
atively simple like duplicating diskettes. Surely, this cannot be a problem—duplicat-

1 This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000,” a
workbook developed for Essential Software Engineering, a video curriculum developed by R. S.
Pressman & Associates, Inc. Reprinted with permission.
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ing diskettes is a trivial manufacturing operation, and we can guarantee that exact
duplicates of the software are always created.

Or can we? We need to ensure the tracks are placed on the diskettes within a
specified tolerance so that the overwhelming majority of disk drives can read the
diskettes. In addition, we need to ensure the magnetic flux for distinguishing a zero
from a one is sufficient for read/write heads to detect. The disk duplication machines
can, and do, wear and go out of tolerance. So even a “simple” process such as disk
duplication may encounter problems due to variation between samples.

But how does this apply to software work? How might a software development
organization need to control variation? From one project to another, we want to min-
imize the difference between the predicted resources needed to complete a project
and the actual resources used, including staff, equipment, and calendar time. In gen-
eral, we would like to make sure our testing program covers a known percentage of
the software, from one release to another. Not only do we want to minimize the
number of defects that are released to the field, we'd like to ensure that the variance
in the number of bugs is also minimized from one release to another. (Our customers
will likely be upset if the third release of a product has ten times as many defects as
the previous release.) We would like to minimize the differences in speed and accu-
racy of our hotline support responses to customer problems. The list goes on and on.

8.1.1

The American Heritage Dictionary defines quality as “a characteristic or attribute of
something.” As an attribute of an item, quality refers to measurable characteristics—
things we are able to compare to known standards such as length, color, electrical
properties, and malleability. However, software, largely an intellectual entity, is more
challenging to characterize than physical objects.

Nevertheless, measures of a program'’s characteristics do exist. These properties
include cyclomatic complexity, cohesion, number of function points, lines of code,
and many others, discussed in Chapters 19 and 24. When we examine an item based
on its measurable characteristics, two kinds of quality may be encountered: quality
of design and quality of conformance.

Quality of design refers to the characteristics that designers specify for an item. The
grade of materials, tolerances, and performance specifications all contribute to the
quality of design. As higher-grade materials are used, tighter tolerances and greater
levels of performance are specified, the design quality of a product increases, if the
product is manufactured according to specifications.

Quuality of conformance is the degree to which the design specifications are fol-
lowed during manufacturing. Again, the greater the degree of conformance, the higher
is the level of quality of conformance.

In software development, quality of design encompasses requirements, specifica-
tions, and the design of the system. Quality of conformance is an issue focused

Quality
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primarily on implementation. If the implementation follows the design and the result-
ing system meets its requirements and performance goals, conformance quality is
high.

But are quality of design and quality of conformance the only issues that software
engineers must consider? Robert Glass [GLA98] argues that a more “intuitive” rela-
tionship is in order:

User satisfaction = compliant product + good quality +
delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn't sat-
isfied, nothing else really matters. DeMarco [DEM99] reinforces this view when he
states: “A product’s quality is a function of how much it changes the world for the
better.” This view of quality contends that if a software product provides substantial
benefit to its end-users, they may be willing to tolerate occasional reliability or per-
formance problems.

8.1.2 Quality Control

Variation control may be equated to quality control. But how do we achieve quality
control? Quality control involves the series of inspections, reviews, and tests used
throughout the software process to ensure each work product meets the require-
ments placed upon it. Quality control includes a feedback loop to the process that
created the work product. The combination of measurement and feedback allows us
to tune the process when the work products created fail to meet their specifications.
This approach views quality control as part of the manufacturing process.

Quality control activities may be fully automated, entirely manual, or a combina-
tion of automated tools and human interaction. A key concept of quality control is
that all work products have defined, measurable specifications to which we may com-
pare the output of each process. The feedback loop is essential to minimize the
defects produced.

8.1.3 Quality Assurance

Quuality assurance consists of the auditing and reporting functions of management.
The goal of quality assurance is to provide management with the data necessary to
be informed about product quality, thereby gaining insight and confidence that prod-
uct quality is meeting its goals. Of course, if the data provided through quality assur-
ance identify problems, it is management'’s responsibility to address the problems
and apply the necessary resources to resolve quality issues.

8.1.4 Cost of Quality

The cost of quality includes all costs incurred in the pursuit of quality or in perform-
ing quality-related activities. Cost of quality studies are conducted to provide a base-
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line for the current cost of quality, identify opportunities for reducing the cost of qual-
ity, and provide a normalized basis of comparison. The basis of normalization is
almost always dollars. Once we have normalized quality costs on a dollar basis, we
have the necessary data to evaluate where the opportunities lie to improve our
processes. Furthermore, we can evaluate the effect of changes in dollar-based terms.

Quality costs may be divided into costs associated with prevention, appraisal, and
failure. Prevention costs include

e quality planning

e formal technical reviews

e test equipment

e training
Appraisal costs include activities to gain insight into product condition the “first time
through” each process. Examples of appraisal costs include

e in-process and interprocess inspection

e equipment calibration and maintenance

e testing
Failure costs are those that would disappear if no defects appeared before shipping a
product to customers. Failure costs may be subdivided into internal failure costs and
external failure costs. Internal failure costs are incurred when we detect a defect in
our product prior to shipment. Internal failure costs include

e rework

e repair

¢ failure mode analysis
External failure costs are associated with defects found after the product has been
shipped to the customer. Examples of external failure costs are

e complaint resolution

e product return and replacement

¢ help line support

e warranty work
As expected, the relative costs to find and repair a defect increase dramatically as
we go from prevention to detection to internal failure to external failure costs. Fig-
ure 8.1, based on data collected by Boechm [BOE81] and others, illustrates this phe-
nomenon.

Anecdotal data reported by Kaplan, Clark, and Tang [KAP95] reinforces earlier cost
statistics and is based on work at IBM's Rochester development facility:
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A total of 7053 hours was spent inspecting 200,000 lines of code with the result that 3112
potential defects were prevented. Assuming a programmer cost of $40.00 per hour, the total
cost of preventing 3112 defects was $282,120, or roughly $91.00 per defect.

Compare these numbers to the cost of defect removal once the product has been
shipped to the customer. Suppose that there had been no inspections, but that program-
mers had been extra careful and only one defect per 1000 lines of code [significantly better
than industry average] escaped into the shipped product. That would mean that 200 defects
would still have to be fixed in the field. At an estimated cost of $25,000 per field fix, the cost
would be $5 million, or approximately 18 times more expensive than the total cost of the
defect prevention effort.

It is true that IBM produces software that is used by hundreds of thousands of cus-
tomers and that their costs for field fixes may be higher than those for software orga-
nizations that build custom systems. This in no way negates the results just noted.
Even if the average software organization has field fix costs that are 25 percent of
IBM’s (most have no idea what their costs are!), the cost savings associated with qual-
ity control and assurance activities are compelling.

THE QUALITY MOVEMENT

Today, senior managers at companies throughout the industrialized world recognize
that high product quality translates to cost savings and an improved bottom line.
However, this was not always the case. The quality movement began in the 1940s
with the seminal work of W. Edwards Deming [DEM86] and had its first true test in
Japan. Using Deming'’s ideas as a cornerstone, the Japanese developed a systematic
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approach to the elimination of the root causes of product defects. Throughout the
1970s and 1980s, their work migrated to the western world and was given names
such as “total quality management” (TQM).2 Although terminology differs across dif-
ferent companies and authors, a basic four step progression is normally encountered
and forms the foundation of any good TQM program.

The first step, called kaizen, refers to a system of continuous process improvement.
The goal of kaizen is to develop a process (in this case, the software process) that is
visible, repeatable, and measurable.

The second step, invoked only after kaizen has been achieved, is called atarimae
hinshitsu. This step examines intangibles that affect the process and works to opti-
mize their impact on the process. For example, the software process may be affected
by high staff turnover, which itself is caused by constant reorganization within a com-
pany. Maybe a stable organizational structure could do much to improve the quality
of software. Atarimae hinshitsu would lead management to suggest changes in the
way reorganization occurs.

While the first two steps focus on the process, the next step, called kansei (trans-
lated as “the five senses”), concentrates on the user of the product (in this case, soft-
ware). In essence, by examining the way the user applies the product kansei leads to
improvement in the product itself and, potentially, to the process that created it.

Finally, a step called miryokuteki hinshitsu broadens management concern beyond
the immediate product. This is a business-oriented step that looks for opportunity in
related areas identified by observing the use of the product in the marketplace. In the
software world, miryokuteki hinshitsu might be viewed as an attempt to uncover new
and profitable products or applications that are an outgrowth from an existing
computer-based system.

For most companies kaizen should be of immediate concern. Until a mature soft-
ware process (Chapter 2) has been achieved, there is little point in moving to the next
steps.

8.3 SOFTWARE QUALITY ASSURANCE

Even the most jaded software developers will agree that high-quality software is an
important goal. But how do we define quality? A wag once said, "Every program does
something right, it just may not be the thing that we want it to do."

Many definitions of software quality have been proposed in the literature. For our
purposes, software quality is defined as

Conformance to explicitly stated functional and performance requirements, explicitly doc-
umented development standards, and implicit characteristics that are expected of all pro-
fessionally developed software.

2 See [ART92] for a comprehensive discussion of TQM and its use in a software context and
[KAP95] for a discussion of the use of the Baldrige Award criteria in the software world.
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There is little question that this definition could be modified or extended. In fact, a
definitive definition of software quality could be debated endlessly. For the purposes
of this book, the definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is measured.
Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the man-
ner in which software is engineered. If the criteria are not followed, lack of
quality will almost surely result.

3. A set of implicit requirements often goes unmentioned (e.g., the desire for
ease of use and good maintainability). If software conforms to its explicit
requirements but fails to meet implicit requirements, software quality is sus-
pect.

8.3.1 Background Issues

Quality assurance is an essential activity for any business that produces products to
be used by others. Prior to the twentieth century, quality assurance was the sole
responsibility of the craftsperson who built a product. The first formal quality assur-
ance and control function was introduced at Bell Labs in 1916 and spread rapidly
throughout the manufacturing world. During the 1940s, more formal approaches to
quality control were suggested. These relied on measurement and continuous process
improvement as key elements of quality management.

Today, every company has mechanisms to ensure quality in its products. In fact,
explicit statements of a company's concern for quality have become a marketing ploy
during the past few decades.

The history of quality assurance in software development parallels the history of
quality in hardware manufacturing. During the early days of computing (1950s and
1960s), quality was the sole responsibility of the programmer. Standards for quality
assurance for software were introduced in military contract software development
during the 1970s and have spread rapidly into software development in the com-
mercial world [IEE94]. Extending the definition presented earlier, software quality
assurance is a "planned and systematic pattern of actions" [SCH98] that are required
to ensure high quality in software. The scope of quality assurance responsibility might
best be characterized by paraphrasing a once-popular automobile commercial: "Qual-
ity Is Job #1." The implication for software is that many different constituencies have
software quality assurance responsibility—software engineers, project managers,
customers, salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer's in-house representative. That is, the peo-
ple who perform SQA must look at the software from the customer's point of view.
Does the software adequately meet the quality factors noted in Chapter 19? Has soft-
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ware development been conducted according to pre-established standards? Have
technical disciplines properly performed their roles as part of the SQA activity? The
SQA group attempts to answer these and other questions to ensure that software
quality is maintained.

8.3.2 SQA Activities

Software quality assurance is composed of a variety of tasks associated with two dif-
ferent constituencies—the software engineers who do technical work and an SQA
group that has responsibility for quality assurance planning, oversight, record keep-
ing, analysis, and reporting.

Software engineers address quality (and perform quality assurance and quality
control activities) by applying solid technical methods and measures, conducting for-
mal technical reviews, and performing well-planned software testing. Only reviews
are discussed in this chapter. Technology topics are discussed in Parts Three through
Five of this book.

The charter of the SQA group is to assist the software team in achieving a high-
quality end product. The Software Engineering Institute [PAU93] recommends a set
of SQA activities that address quality assurance planning, oversight, record keeping,
analysis, and reporting. These activities are performed (or facilitated) by an inde-
pendent SQA group that:

Prepares an SQA plan for a project. The plan is developed during project plan-
ning and is reviewed by all interested parties. Quality assurance activities performed
by the software engineering team and the SQA group are governed by the plan. The
plan identifies

e evaluations to be performed

e audits and reviews to be performed

e standards that are applicable to the project

e procedures for error reporting and tracking

e documents to be produced by the SQA group

e amount of feedback provided to the software project team

Participates in the development of the project’s software process descrip-
tion. The software team selects a process for the work to be performed. The SQA
group reviews the process description for compliance with organizational policy,
internal software standards, externally imposed standards (e.g., ISO-9001), and other
parts of the software project plan.

Reviews software engineering activities to verify compliance with the defined
software process. The SQA group identifies, documents, and tracks deviations from
the process and verifies that corrections have been made.
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Audits designated software work products to verify compliance with those
defined as part of the software process. The SQA group reviews selected work
products; identifies, documents, and tracks deviations; verifies that corrections have
been made; and periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented
and handled according to a documented procedure. Deviations may be encoun-
tered in the project plan, process description, applicable standards, or technical work
products.

Records any noncompliance and reports to senior management. Noncom-
pliance items are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and manage-
ment of change (Chapter 9) and helps to collect and analyze software metrics.

SOFTWARE REVIEWS

Software reviews are a "filter" for the software engineering process. That is, reviews
are applied at various points during software development and serve to uncover errors
and defects that can then be removed. Software reviews "purify" the software engi-
neering activities that we have called analysis, design, and coding. Freedman and
Weinberg [FRE90] discuss the need for reviews this way:

Technical work needs reviewing for the same reason that pencils need erasers: To err is
human. The second reason we need technical reviews is that although people are good at
catching some of their own errors, large classes of errors escape the originator more eas-
ily than they escape anyone else. The review process is, therefore, the answer to the prayer
of Robert Burns:

O wad some power the giftie give us
to see ourselves as other see us

A review—any review—is a way of using the diversity of a group of people to:

1. Point out needed improvements in the product of a single person or team;

2. Confirm those parts of a product in which improvement is either not desired or not
needed;

3. Achieve technical work of more uniform, or at least more predictable, quality than can
be achieved without reviews, in order to make technical work more manageable.

Many different types of reviews can be conducted as part of software engineer-
ing. Each has its place. An informal meeting around the coffee machine is a form of
review, if technical problems are discussed. A formal presentation of software design
to an audience of customers, management, and technical staff is also a form of
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review. In this book, however, we focus on the formal technical review, sometimes
called a walkthrough or an inspection. A formal technical review is the most effec-
tive filter from a quality assurance standpoint. Conducted by software engineers (and
others) for software engineers, the FTR is an effective means for improving software
quality.

8.4.1 Cost Impact of Software Defects

The IEEE Standard Dictionary of Electrical and Electronics Terms (IEEE Standard 100-
1992) defines a defect as “a product anomaly.” The definition for fault in the hardware
context can be found in IEEE Standard 610.12-1990:

(@) A defect in a hardware device or component; for example, a short circuit or broken
wire. (b) An incorrect step, process, or data definition in a computer program. Note: This
definition is used primarily by the fault tolerance discipline. In common usage, the terms
"error' and "bug" are used to express this meaning. See also: data-sensitive fault; program-
sensitive fault; equivalent faults; fault masking; intermittent fault.

Within the context of the software process, the terms defect and fault are synony-
mous. Both imply a quality problem that is discovered after the software has been
released to end-users (or to another activity in the software process). In earlier chap-
ters, we used the term error to depict a quality problem that is discovered by software
engineers (or others) before the software is released to the end-user (or to another
activity in the software process).

The primary objective of formal technical reviews is to find errors during the process
so that they do not become defects after release of the software. The obvious bene-
fit of formal technical reviews is the early discovery of errors so that they do not prop-
agate to the next step in the software process.

A number of industry studies (by TRW, Nippon Electric, Mitre Corp., among oth-
ers) indicate that design activities introduce between 50 and 65 percent of all errors
(and ultimately, all defects) during the software process. However, formal review tech-
niques have been shown to be up to 75 percent effective JON86] in uncovering design
flaws. By detecting and removing a large percentage of these errors, the review process
substantially reduces the cost of subsequent steps in the development and support
phases.

To illustrate the cost impact of early error detection, we consider a series of rela-
tive costs that are based on actual cost data collected for large software projects
[IBM81].3 Assume that an error uncovered during design will cost 1.0 monetary unit
to correct. Relative to this cost, the same error uncovered just before testing com-
mences will cost 6.5 units; during testing, 15 units; and after release, between 60 and
100 units.

3 Although these data are more than 20 years old, they remain applicable in a modern context.
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8.4.2 Defect Amplification and Removal

A defect amplification model [IBM81] can be used to illustrate the generation and
detection of errors during the preliminary design, detail design, and coding steps
of the software engineering process. The model is illustrated schematically in Fig-
ure 8.2. A box represents a software development step. During the step, errors may
be inadvertently generated. Review may fail to uncover newly generated errors and
errors from previous steps, resulting in some number of errors that are passed through.
In some cases, errors passed through from previous steps are amplified (amplifica-
tion factor, x) by current work. The box subdivisions represent each of these charac-
teristics and the percent of efficiency for detecting errors, a function of the thoroughness
of the review.

Figure 8.3 illustrates a hypothetical example of defect amplification for a software
development process in which no reviews are conducted. Referring to the figure, each
test step is assumed to uncover and correct 50 percent of all incoming errors with-
out introducing any new errors (an optimistic assumption). Ten preliminary design
defects are amplified to 94 errors before testing commences. Twelve latent errors are
released to the field. Figure 8.4 considers the same conditions except that design and
code reviews are conducted as part of each development step. In this case, ten ini-
tial preliminary design errors are amplified to 24 errors before testing commences.
Only three latent errors exist. Recalling the relative costs associated with the dis-
covery and correction of errors, overall cost (with and without review for our hypo-
thetical example) can be established. The number of errors uncovered during each
of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error
(1.5 cost units for design, 6.5 cost units before test, 15 cost units during test, and 67
cost units after release). Using these data, the total cost for development and main-
tenance when reviews are conducted is 783 cost units. When no reviews are con-
ducted, total cost is 2177 units—nearly three times more costly.

To conduct reviews, a software engineer must expend time and effort and the
development organization must spend money. However, the results of the preceding
example leave little doubt that we can pay now or pay much more later. Formal tech-
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nical reviews (for design and other technical activities) provide a demonstrable cost
benefit. They should be conducted.

FORMAL TECHNICAL REVIEWS

A formal technical review is a software quality assurance activity performed by soft-
ware engineers (and others). The objectives of the FTR are (1) to uncover errors in
function, logic, or implementation for any representation of the software; (2) to verify
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that the software under review meets its requirements; (3) to ensure that the software
has been represented according to predefined standards; (4) to achieve software that
is developed in a uniform manner; and (5) to make projects more manageable. In addi-
tion, the FTR serves as a training ground, enabling junior engineers to observe differ-
ent approaches to software analysis, design, and implementation. The FTR also serves
to promote backup and continuity because a number of people become familiar with
parts of the software that they may not have otherwise seen.

The FTR is actually a class of reviews that includes walkthroughs, inspections,
round-robin reviews and other small group technical assessments of software. Each
FTR is conducted as a meeting and will be successful only if it is properly planned,
controlled, and attended. In the sections that follow, guidelines similar to those for a
walkthrough [FRE90], [GIL93] are presented as a representative formal technical review.

8.5.1 The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by
the following constraints:

e Between three and five people (typically) should be involved in the review.

e Advance preparation should occur but should require no more than two
hours of work for each person.

e The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and
small) part of the overall software. For example, rather than attempting to review an
entire design, walkthroughs are conducted for each component or small group of
components. By narrowing focus, the FTR has a higher likelihood of uncovering errors.

The focus of the FTR is on a work product (e.g., a portion of a requirements spec-
ification, a detailed component design, a source code listing for a component). The
individual who has developed the work product—the producer—informs the project
leader that the work product is complete and that a review is required. The project
leader contacts a review leader, who evaluates the product for readiness, generates
copies of product materials, and distributes them to two or three reviewers for advance
preparation. Each reviewer is expected to spend between one and two hours review-
ing the product, making notes, and otherwise becoming familiar with the work. Con-
currently, the review leader also reviews the product and establishes an agenda for
the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the pro-
ducer. One of the reviewers takes on the role of the recorder; that is, the individual
who records (in writing) all important issues raised during the review. The FTR begins
with an introduction of the agenda and a brief introduction by the producer. The pro-
ducer then proceeds to "walk through" the work product, explaining the material,
while reviewers raise issues based on their advance preparation. When valid prob-
lems or errors are discovered, the recorder notes each.
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At the end of the review, all attendees of the FTR must decide whether to (1) accept
the product without further modification, (2) reject the product due to severe errors
(once corrected, another review must be performed), or (3) accept the product pro-
visionally (minor errors have been encountered and must be corrected, but no addi-
tional review will be required). The decision made, all FTR attendees complete a
sign-off, indicating their participation in the review and their concurrence with the
review team's findings.

8.5.2 Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been
raised. These are summarized at the end of the review meeting and a review issues
list is produced. In addition, a formal technical review summary report is completed.
A review summary report answers three questions:

1. What was reviewed?
2. Who reviewed it?

3. What were the findings and conclusions?

The review summary report is a single page form (with possible attachments). It
becomes part of the project historical record and may be distributed to the project
leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within the
product and (2) to serve as an action item checklist that guides the producer as cor-
rections are made. An issues list is normally attached to the summary report.

It is important to establish a follow-up procedure to ensure that items on the issues
list have been properly corrected. Unless this is done, it is possible that issues raised
can “fall between the cracks.” One approach is to assign the responsibility for follow-
up to the review leader.

8.5.3 Review Guidelines

Guidelines for the conduct of formal technical reviews must be established in advance,
distributed to all reviewers, agreed upon, and then followed. A review that is uncon-
trolled can often be worse that no review at all. The following represents a minimum
set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Con-
ducted properly, the FTR should leave all participants with a warm feeling of
accomplishment. Conducted improperly, the FTR can take on the aura of an
inquisition. Errors should be pointed out gently; the tone of the meeting
should be loose and constructive; the intent should not be to embarrass or
belittle. The review leader should conduct the review meeting to ensure that
the proper tone and attitude are maintained and should immediately halt a
review that has gotten out of control.
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2.

10.

Set an agenda and maintain it. One of the key maladies of meetings of all
types is drift. An FTR must be kept on track and on schedule. The review
leader is chartered with the responsibility for maintaining the meeting sched-
ule and should not be afraid to nudge people when drift sets in.

Limit debate and rebuttal. When an issue is raised by a reviewer, there may
not be universal agreement on its impact. Rather than spending time debat-
ing the question, the issue should be recorded for further discussion off-line.

Enunciate problem areas, but don't attempt to solve every problem noted. A
review is not a problem-solving session. The solution of a problem can often
be accomplished by the producer alone or with the help of only one other
individual. Problem solving should be postponed until after the review meet-
ing.

Take written notes. It is sometimes a good idea for the recorder to make notes
on a wall board, so that wording and priorities can be assessed by other
reviewers as information is recorded.

Limit the number of participants and insist upon advance preparation. Two
heads are better than one, but 14 are not necessarily better than 4. Keep the
number of people involved to the necessary minimum. However, all review
team members must prepare in advance. Written comments should be
solicited by the review leader (providing an indication that the reviewer has
reviewed the material).

. Develop a checklist for each product that is likely to be reviewed. A checklist

helps the review leader to structure the FTR meeting and helps each reviewer
to focus on important issues. Checklists should be developed for analysis,
design, code, and even test documents.

. Allocate resources and schedule time for FTRs. For reviews to be effective, they

should be scheduled as a task during the software engineering process. In
addition, time should be scheduled for the inevitable modifications that will
occur as the result of an FTR.

Conduct meaningful training for all reviewers. To be effective all review patrtici-
pants should receive some formal training. The training should stress both
process-related issues and the human psychological side of reviews. Freed-
man and Weinberg [FRE90] estimate a one-month learning curve for every 20
people who are to participate effectively in reviews.

Review your early reviews. Debriefing can be beneficial in uncovering prob-

lems with the review process itself. The very first product to be reviewed
should be the review guidelines themselves.

Because many variables (e.g., number of participants, type of work products, tim-
ing and length, specific review approach) have an impact on a successful review, a
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software organization should experiment to determine what approach works best in
a local context. Porter and his colleagues [POR95] provide excellent guidance for this
type of experimentation.

FORMAL APPROACHES TO SQA

In the preceding sections, we have argued that software quality is everyone's job;
that it can be achieved through competent analysis, design, coding, and testing, as
well as through the application of formal technical reviews, a multitiered testing strat-
egy, better control of software work products and the changes made to them, and
the application of accepted software engineering standards. In addition, quality can
be defined in terms of a broad array of quality factors and measured (indirectly) using
a variety of indices and metrics.

Over the past two decades, a small, but vocal, segment of the software engineer-
ing community has argued that a more formal approach to software quality assur-
ance isrequired. It can be argued that a computer program is a mathematical object
[SOM96]. A rigorous syntax and semantics can be defined for every programming
language, and work is underway to develop a similarly rigorous approach to the spec-
ification of software requirements. If the requirements model (specification) and the
programming language can be represented in a rigorous manner, it should be pos-
sible to apply mathematic proof of correctness to demonstrate that a program con-
forms exactly to its specifications.

Attempts to prove programs correct are not new. Dijkstra [DIJ76] and Linger, Mills,
and Witt [LIN79], among others, advocated proofs of program correctness and tied
these to the use of structured programming concepts (Chapter 16).

STATISTICAL SOFTWARE QUALITY ASSURANCE

Statistical quality assurance reflects a growing trend throughout industry to become
more quantitative about quality. For software, statistical quality assurance implies
the following steps:

1. Information about software defects is collected and categorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-
conformance to specifications, design error, violation of standards, poor
communication with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 per-
cent of all possible causes), isolate the 20 percent (the "vital few").

4. Once the vital few causes have been identified, move to correct the problems
that have caused the defects.
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This relatively simple concept represents an important step towards the creation of
an adaptive software engineering process in which changes are made to improve
those elements of the process that introduce error.

To illustrate this, assume that a software engineering organization collects infor-
mation on defects for a period of one year. Some of the defects are uncovered as soft-
ware is being developed. Others are encountered after the software has been released
to its end-users. Although hundreds of different errors are uncovered, all can be
tracked to one (or more) of the following causes:

e incomplete or erroneous specifications (IES)

e misinterpretation of customer communication (MCC)

e intentional deviation from specifications (IDS)

e violation of programming standards (VPS)

e error in data representation (EDR)

e inconsistent component interface (ICI)

e error in design logic (EDL)

e incomplete or erroneous testing (IET)

e inaccurate or incomplete documentation (IID)

e error in programming language translation of design (PLT)
e ambiguous or inconsistent human/computer interface (HCI)

¢ miscellaneous (MIS)

To apply statistical SQA, Table 8.1 is built. The table indicates that IES, MCC, and EDR
are the vital few causes that account for 53 percent of all errors. It should be noted,
however, that IES, EDR, PLT, and EDL would be selected as the vital few causes if
only serious errors are considered. Once the vital few causes are determined, the
software engineering organization can begin corrective action. For example, to cor-
rect MCC, the software developer might implement facilitated application specifica-
tion techniques (Chapter 11) to improve the quality of customer communication and
specifications. To improve EDR, the developer might acquire CASE tools for data mod-
eling and perform more stringent data design reviews.

It is important to note that corrective action focuses primarily on the vital few. As
the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to provide
substantial quality improvement [ART97]. In some cases, software organizations have
achieved a 50 percent reduction per year in defects after applying these techniques.

In conjunction with the collection of defect information, software developers can
calculate an error index (El) for each major step in the software process {IEE94]. After
analysis, design, coding, testing, and release, the following data are gathered:

E; = the total number of errors uncovered during the ith step in the software engi-
neering process
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TABLE 8.1 DATA COLLECTION FOR STATISTICAL SQA

Total Serious Moderate Minor
Error No. % No. % No. % No. %
IES 205 22% 34 27% 68 18% 103 24%
MCC 156 17% 12 Q% 68 18% 76 17%
IDS 48 5% ] 1% 24 6% 23 5%
VPS 25 3% 0 0% 15 4% 10 2%
EDR 130 14% 26 20% 68 18% 36 8%
ICI 58 6% Q 7% 18 5% 31 7%
EDL 45 5% 14 11% 12 3% 19 4%
IET Q5 10% 12 Q% 35 Q% 48 11%
D 36 4% 2 2% 20 5% 14 3%
PLT 60 6% 15 12% 19 5% 26 6%
HCI 28 3% 3 2% 17 4% 8 2%
MIS _56 _ 6% _0 _ 0% _15 _ 4% 41 _ 9%
Totals Q42 100% 128 100% 379 100% 435 100%

S; = the number of serious errors

M; = the number of moderate errors

T; = the number of minor errors

PS = size of the product (LOC, design statements, pages of documentation) at the

ith step

ws, Wy, Wy = weighting factors for serious, moderate, and trivial errors, where rec-
ommended values are wg = 10, wp, = 3, w; = 1. The weighting factors for each phase
should become larger as development progresses. This rewards an organization that
finds errors early.

At each step in the software process, a phase index, Pl;, is computed:
Plj = ws (Si/E)) + W (M/Ej) + Wy (Ti/E))

The error index is computed by calculating the cumulative effect on each PI;, weight-
ing errors encountered later in the software engineering process more heavily than
those encountered earlier:

El = 3(ix PI)/PS
= (PIy + 2PI, + 3PI3 + .. . IPI})/PS

The error index can be used in conjunction with information collected in Table 8.1 to
develop an overall indication of improvement in software quality.

The application of the statistical SQA and the Pareto principle can be summarized
in a single sentence: Spend your time focusing on things that really matter, but first be
sure that you understand what really matters’!
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A comprehensive discussion of statistical SQA is beyond the scope of this book.
Interested readers should see [SCH98], [KAP95], or [KAN95].

SOFTWARE RELIABILITY

There is no doubt that the reliability of a computer program is an important element
of its overall quality. If a program repeatedly and frequently fails to perform, it mat-
ters little whether other software quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directed and
estimated using historical and developmental data. Software reliability is defined in sta-
tistical terms as "the probability of failure-free operation of a computer program in a
specified environment for a specified time" [MUS87]. To illustrate, program X is estimated
to have a reliability of 0.96 over eight elapsed processing hours. In other words, if pro-
gram X were to be executed 100 times and require eight hours of elapsed processing
time (execution time), it is likely to operate correctly (without failure) 96 times out of 100.

Whenever software reliability is discussed, a pivotal question arises: What is meant
by the term failure? In the context of any discussion of software quality and reliabil-
ity, failure is nonconformance to software requirements. Yet, even within this defin-
ition, there are gradations. Failures can be only annoying or catastrophic. One failure
can be corrected within seconds while another requires weeks or even months to
correct. Complicating the issue even further, the correction of one failure may in fact
result in the introduction of other errors that ultimately result in other failures.

8.8.1 Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hard-
ware reliability theory (e.g., [ALV64]) to the prediction of software reliability. Most
hardware-related reliability models are predicated on failure due to wear rather than
failure due to design defects. In hardware, failures due to physical wear (e.g., the
effects of temperature, corrosion, shock) are more likely than a design-related fail-
ure. Unfortunately, the opposite is true for software. In fact, all software failures can
be traced to design or implementation problems; wear (see Chapter 1) does not enter
into the picture.

There has been debate over the relationship between key concepts in hardware
reliability and their applicability to software (e.g., [LIT89], [ROO90]). Although an
irrefutable link has yet be be established, it is worthwhile to consider a few simple
concepts that apply to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean-
time-between-failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair,
respectively.
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Many researchers argue that MTBF is a far more useful measure than defects/KLOC
or defects/FP. Stated simply, an end-user is concerned with failures, not with the total
error count. Because each error contained within a program does not have the same
failure rate, the total error count provides little indication of the reliability of a sys-
tem. For example, consider a program that has been in operation for 14 months. Many
errors in this program may remain undetected for decades before they are discov-
ered. The MTBF of such obscure errors might be 50 or even 100 years. Other errors,
as yet undiscovered, might have a failure rate of 18 or 24 months. Even if every one
of the first category of errors (those with long MTBF) is removed, the impact on soft-
ware reliability is negligible.

In addition to a reliability measure, we must develop a measure of availability.
Software availability is the probability that a program is operating according to require-
ments at a given point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] X 100%

The MTBEF reliability measure is equally sensitive to MTTF and MTTR. The availabil-
ity measure is somewhat more sensitive to MTTR, an indirect measure of the main-
tainability of software.

8.8.2 Software Safety

Leveson [LEV86] discusses the impact of software in safety critical systems when she
writes:

Before software was used in safety critical systems, they were often controlled by conven-
tional (nonprogrammable) mechanical and electronic devices. System safety techniques
are designed to cope with random failures in these [nonprogrammable] systems. Human
design errors are not considered since it is assumed that all faults caused by human errors
can be avoided completely or removed prior to delivery and operation.

When software is used as part of the control system, complexity can increase by an
order of magnitude or more. Subtle design faults induced by human error—some-
thing that can be uncovered and eliminated in hardware-based conventional con-
trol—become much more difficult to uncover when software is used.

Software safely is a software quality assurance activity that focuses on the identi-
fication and assessment of potential hazards that may affect software negatively and
cause an entire system to fail. If hazards can be identified early in the software engi-
neering process, software design features can be specified that will either eliminate
or control potential hazards.

A modeling and analysis process is conducted as part of software safety. Initially,
hazards are identified and categorized by criticality and risk. For example, some of the
hazards associated with a computer-based cruise control for an automobile might be

e causes uncontrolled acceleration that cannot be stopped

¢ does not respond to depression of brake pedal (by turning off)
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e does not engage when switch is activated

e slowly loses or gains speed

Once these system-level hazards are identified, analysis techniques are used to assign
severity and probability of occurrence.4 To be effective, software must be analyzed
in the context of the entire system. For example, a subtle user input error (people are
system components) may be magnified by a software fault to produce control data
that improperly positions a mechanical device. If a set of external environmental con-
ditions are met (and only if they are met), the improper position of the mechanical
device will cause a disastrous failure. Analysis techniques such as fault tree analysis
[VES81], real-time logic [JAN86], or petri net models [LEV87] can be used to predict
the chain of events that can cause hazards and the probability that each of the events
will occur to create the chain.

Once hazards are identified and analyzed, safety-related requirements can be spec-
ified for the software. That is, the specification can contain a list of undesirable events
and the desired system responses to these events. The role of software in managing
undesirable events is then indicated.

Although software reliability and software safety are closely related to one another,
it is important to understand the subtle difference between them. Software reliabil-
ity uses statistical analysis to determine the likelihood that a software failure will
occur. However, the occurrence of a failure does not necessarily result in a hazard
or mishap. Software safety examines the ways in which failures result in conditions
that can lead to a mishap. That is, failures are not considered in a vacuum, but are
evaluated in the context of an entire computer-based system.

A comprehensive discussion of software safety is beyond the scope of this book.
Those readers with further interest should refer to Leveson’s [LEV95] book on the
subject.

MISTAKE-PROOFING FOR SOFTWARE

If William Shakespeare had commented on the modern software engineer’s condi-
tion, he might have written: “To err is human, to find the error quickly and correct it
is divine.” In the 1960s, a Japanese industrial engineer, Shigeo Shingo [SHI86], work-
ing at Toyota, developed a quality assurance technique that led to the prevention
and/or early correction of errors in the manufacturing process. Called poka-yoke
(mistake-proofing), Shingo’s concept makes use of poka-yoke devices—mechanisms
that lead to (1) the prevention of a potential quality problem before it occurs or (2)
the rapid detection of quality problems if they are introduced. We encounter poka-
yoke devices in our everyday lives (even if we are unaware of the concept). For exam-

4 This approach is analogous to the risk analysis appr